cho tam giác abc có ab=ac trên ab lấy e trên ac lấy f sao cho ae=af
cmt
a,tam giác abf=ace
b;bf cắt ce tại cm bo=co
c,cm tam giác boe=cof
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
b: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Suy ra: EB=ED
c: Xét ΔBEG và ΔDEC có
BE=DE
\(\widehat{BEG}=\widehat{DEC}\)
EG=EC
Do đó: ΔBEG=ΔDEC
Suy ra: \(\widehat{EBG}=\widehat{EDC}\)
=>\(\widehat{EBG}+\widehat{ADE}=180^0\)
=>\(\widehat{EBG}+\widehat{EBA}=180^0\)
=>A,B,G thẳng hàng
nghỉ hè rùi zui chơi là chính nên mấy câu này để sau đi nếu ko gấp!!!
575676587689
Ta có AD là tia phân giác góc BAC (GT)
suy ra góc BAD = góc EAD
Xét tam giác ADB và tam giác ADE có
AD chung
góc BAD = EAD (CMT)
AB = AE (GT)
suy ra tam giác ADB = tam giác ADE (c-g-c)
Đề bài câu b) sai
Phải là góc EBD = góc BED chứ
c)Ta có
AB+BF=AF
AE+EC=AC
AB=AE(GT)
AF=AC(GT)
suy ra BF=EC
Ta có tam giác ADB = tam giác AEB (CMT)
suy ra góc ABD = góc AED ( 2 góc tương ứng)
Ta có góc ABD = góc AED (CMT)
góc ABD + góc DBF = 180 (2 góc kề bù)
góc AED + góc DEC = 180 (2 góc kề bù)
suy ra góc DBF = góc DEC
Ta có tam giác ADB = tam giac AEC (CMT)
suy ra DB = DE ( 2 cạnh tương ứng)
Xét tam giác DBF và tam giác DEC có
DB = DE (CMT)
góc DBF = góc DEC (CMT)
BF = EC (CMT)
suy ra tam giác DBF = tam giác DEC (c-g-c)
suy ra góc BDF = góc EDC (2 góc rương ứng)
Ta có góc BDE + góc EDC = 180 (2 góc kề bù)
Mà góc BDF = góc EDC (CMT)
suy ra góc BDE +góc BDF = 180
suy ra F;D;E thẳng hàng
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
a: Xét ΔABD và ΔACE có
AB/AC=AD/AE
\(\widehat{A}\) chung
Do đó: ΔABD∼ΔACE
b: Xét ΔADE và ΔABC có AD/AB=AE/AC
\(\widehat{A}\) chung
Do đó: ΔADE∼ΔABC
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
góc DBF=góc DEC
DB=DE
góc BDF=góc EDC
Do đo: ΔDBF=ΔDEC
c:ΔDBF=ΔDEC
nên góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>E,D,F thẳng hàng
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H