Cho ba số thực dương \(a;b;c\) thỏa mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng :
\(\dfrac{a}{\sqrt{a^2+b+c}}+\dfrac{b}{\sqrt{b^2+a+c}}+\dfrac{c}{\sqrt{c^2+b+a}}\le\sqrt{3}\)
P/s: Em xin phép nhờ sự giúp đỡ và gợi ý của quý thầy cô giáo và các bạn yêu toán ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp giải: Áp dụng các công thức cơ bản của biểu thức chứa lôgarit
Lời giải:
Ta có: log a b a 3 = log a b − log a a 3 = log a b − 3 và
log a α b = 1 α log a b
Đáp án B
Ta có:
log a x > log b x > 0 > log c x ⇔ 1 log x a > 1 log x b > 0 log x c < 0 ⇔ log x b > log x c > 0 c < 1 ⇔ b > a > 1 > c .
\(1+\dfrac{9}{3\left(ab+bc+ca\right)}\ge1+\dfrac{9}{\left(a+b+c\right)^2}\ge2\sqrt{\dfrac{9}{\left(a+b+c\right)^2}}=\dfrac{6}{a+b+c}\)
Áp dụng BĐT Bun nhia cốp xki :
\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)
<=>\(\frac{1}{9a^3+3b^2+c}\le\frac{1}{9a}+\frac{1}{3}+c\Leftrightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)
<=> \(\frac{a}{9a^3+3b^2+c}\le\frac{1}{9}+\frac{1}{3}a+ac\)
Làm tương tự với 2 cái còn lại
CỘng vế với vế ba BĐT => GTLN
An nhận nè em.
Gọi vế trái của ( ** ) là T, ta có:
\(T=\frac{m}{2}\left(Y+Y+X\right)+\left(n-\frac{m}{2}\right)X\)
Với \(X=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\), \(Y=a+b+c\), theo bài toán 1 ta có \(X\ge3\);\(XY^2\ge27\).
Suy ra:
\(T\ge\frac{m}{2}.3\sqrt[3]{XY^2}+\left(n-\frac{m}{n}\right).3\)( do \(2n\ge m\))
\(\ge\frac{9m}{2}+3\left(n-\frac{m}{n}\right)=3\left(m+n\right)\)
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
Ta có:
\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+b+c}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)
Tương tự: \(\dfrac{b}{\sqrt{b^2+a+c}}\le\dfrac{b\sqrt{1+c+a}}{a+b+c}\) ; \(\dfrac{c}{\sqrt{c^2+b+a}}\le\dfrac{c\sqrt{1+a+b}}{a+b+c}\)
Cộng vế:
\(P\le\dfrac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\)
Lại có:
\(a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}\)
\(=\sqrt{a}.\sqrt{a+ab+ac}+\sqrt{b}.\sqrt{b+bc+ab}+\sqrt{c}.\sqrt{c+ac+bc}\)
\(\le\sqrt{\left(a+b+c\right)\left(a+b+c+2ab+2bc+2ca\right)}\)
\(\Rightarrow P\le\dfrac{\sqrt{\left(a+b+c\right)\left(a+b+c+2ab+bc+ca\right)}}{a+b+c}=\sqrt{\dfrac{a+b+c+2ab+2bc+2ca}{a+b+c}}\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{a+b+c+2ab+2bc+2ca}{a+b+c}\le3\Leftrightarrow a+b+c\ge ab+bc+ca\)
Thật vậy:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow a+b+c\ge ab+bc+ca\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)