Cho các số thực dương a;b;c thỏa mãn\(a^2+b^2+c^2=1\).Chứng minh
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}+\sqrt{\frac{bc+2a^2}{1+bc-a^2}}+\sqrt{\frac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Đặt log 25 x 2 = log 15 y = log 9 x + y 4 = t ⇒ x 2 = 25 t y = 15 t x + y = 4 . 9 t
⇒ 2 . 15 t + 15 t = 4 . 9 t x y = 2 5 3 t ⇒ 2 . 5 3 2 t + 5 3 t - 4 = 0 ⇔ [ 5 3 t = - 1 + 33 4 5 3 t = - 1 - 33 4
⇒ 5 3 t = - 1 + 33 4 ⇒ x y = - 1 + 33 4 ⇒ a = - 1 b = 33 ⇒ a + b = 32 .
Đáp án C
Ta có
Khi đó
Vậy giá trị nhỏ nhất của biểu thức P là 3 + 2 2
ta có \(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}.\sqrt{ab+2c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}\sqrt{ab+2c^2}}\)
Áp dụng bất đẳng thức cô si ta có
\(\sqrt{ab+1-c^2}\sqrt{ab+2c^2}\le\frac{1}{2}\left(ab+1-c^2+ab+2c^2\right)=\frac{1}{2}\left(2ab+1+c^2\right)\)
=\(\frac{1}{2}\left(2ab+a^2+b^2+2c^2\right)=\frac{1}{2}\left[\left(a+b\right)^2+2c^2\right]\le\frac{1}{2}\left(2a^2+2b^2+2c^2\right)=\left(a^2+b^2+c^2\right)\) =1
=> \(\frac{ab+2c^2}{...}\ge\frac{ab+2c^2}{1}=2c^2+ab\)
tương tự + vào thì e sẽ ra điều phải chứng minh
Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM