Bài 3: Cho hợp số f(n) xác định với n nguyên dương và thỏa mãn:
f(1)=25;f(1)+f(2)+......+f(n)=n2.f(n) với mọi n thuộc Z+. Tính f(2002)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với điều kiện đã cho thì hàm số không xác định tại $x=0$ bạn nhé
Ta có:
$f(x)+2f\left(\frac{1}{x}\right)=x^2(1)$
Cho $x\to \frac{1}{x}$ thì $f\left(\frac{1}{x}\right)+2f(x)=\frac{1}{x^2}$
$\Rightarrow 2f\left(\frac{1}{x}\right)+4f(x)=\frac{2}{x^2}(2)$
Lấy $(2)-(1)$ thì 3f(x)=\frac{2}{x^2}-x^2$
$\Rightarrow f(x)=\frac{2}{3x^2}-\frac{x^2}{3}$
$\Rightarrow f\left(\frac{1}{3}\right)=\frac{161}{27}$
Chia dãy các số nguyên dương từ 1 đến 2020 thành 202 đoạn (1;10) (11;20) ... (2011;2020).
Vì A có 607 số nguyên dương khác nhau chia thành 202 đoạn nên theo nguyên lí Đi - Rich - Lê tồn tại ít nhất 1 đoạn chứa 4 số trong 607 số trên
Vì trong 4 số trên luôn tồn tại 2 số cùng số dư khi chia cho 3 , gọi 2 số đó là x , y ( x > y )
suy ra x - y chia hết cho 3
Mà x - y < 9
suy ra x , y thuộc (3;6;9)
Bài 1
3n + 2 - 2n + 2 + 3n - 2n
= 3n . 32 - 2n . 22 + 3n.1 - 2n.1
= 3n.(9 + 1) - 2n.(4 + 1)
= 3n . 10 - 2n . 5
= 3n . 10 - 2n - 1 . 2 . 5
= 3n . 10 - 2n - 1 . 10
= 10.(3n - 2n - 1)
Vậy với mọi n thì 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
Đặt tổng của 19 số nguyên dương liên tiếp là \(a^2\)
\(\Rightarrow19k+171=a^2\)
\(\Rightarrow19\left(k+9\right)=a^2\)
Vì k là số nguyên dương và k nhỏ nhất nên k+9 là số nguyên dương và k+9 nhỏ nhất
\(\Rightarrow k+9=19\Rightarrow k=10\)
Vậy k=10