K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 3 2023

Ta có: \(f\left(-2\right)=4a-2b+c\)

 \(f\left(3\right)=9a+3b+c=13a+b+2c-4a+2b-c=-4a+2b-c\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(-4a+2b-c\right)=-\left(4a-2b+c\right)^2\le0\) (đpcm)

 

27 tháng 7 2019

a)\(P\left(x\right)=2.2+2x-6.2+4.3+2-3x\)

\(=4+2x-12+12+2-3x\)

\(=\left(2x-3x\right)+\left(4+12+2\right)\)

\(=\left(-x\right)+18\)

\(Q\left(x\right)=3-2.4+3x+2.4+3.3-x\)

\(=3-8+3x+8+9-x\)

\(=\left(3x-x\right)+\left(3-8+8+9\right)\)

\(=2x+12\)

b)\(C\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(\Rightarrow C\left(x\right)=\left(-x+18\right)+\left(2x+12\right)\)

\(C\left(x\right)=-x+18+2x+12\)

\(C\left(x\right)=\left(-x+2x\right)+\left(18+12\right)\)

\(C\left(x\right)=x+26\)

c)\(D\left(x\right)=Q\left(x\right)-P\left(x\right)\)

\(\Rightarrow D\left(x\right)=\left(2x+12\right)-\left(-x+18\right)=\)

\(D\left(x\right)=2x+12+x+18\)

\(D\left(x\right)=\left(2x+x\right)+\left(12+18\right)\)

\(D\left(x\right)=3x+26\)

\(3x\) luôn \(\ge0\)\(\le0\) với mọi x.

Lại có 26>0; \(26⋮̸3\)

\(\Rightarrow\)D(x) vô nghiệm

27 tháng 2 2023

21 tháng 3 2020

1) Thay x=3 vào đẳng thức, thu được:

               \(3\times f\left(3+2\right)=\left(3^2-9\right)\times f\left(3\right)\)

    \(\Leftrightarrow\) \(3\times f\left(5\right)=0\times f\left(3\right)=0\)

    \(\Leftrightarrow\) \(f\left(5\right)=0\)  

2) Ta đã chứng minh x=5 là nhiệm của f(x)\(\Rightarrow\)Cần chứng minh f(x) có 2 nghiệm nữa

  •     Thay x=0 Vào đẳng thức, thu được

               \(0\times f\left(0+2\right)=\left(0^2-9\right)\times f\left(0\right)\)

     \(\Leftrightarrow\) \(f\left(0\right)=0\)

     \(\Rightarrow\)x=0 là ngiệm của f(x)

  •      Thay x=-3 và đẳng thức, thu được

                \(-3\times f\left(-3+2\right)=\left(\left(-3\right)^2-9\right)\times f\left(-3\right)\)

      \(\Leftrightarrow\)\(-3\times f\left(-1\right)=0\times f\left(-3\right)=0\)

      \(\Leftrightarrow\)\(f\left(-1\right)=0\)

       \(\Rightarrow\)x=-1 là nghiệm của f(x)

      Vậy f(x) có ít nhất 3 nghiệm là x=5; x=0; x=-1     

AH
Akai Haruma
Giáo viên
3 tháng 2 2017

Lời giải:

Vì $f(x)$ chia hết cho $3$ với mọi \(x\in\mathbb{Z}\) nên ta có:

\(\left\{\begin{matrix} f(0)=c\vdots 3\\ f(1)=a+b+c\vdots 3 3\\ f(-1)=a-b+c\vdots 3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c\vdots 3\\ a+b\vdots 3(1)\\ a-b\vdots 3 (2) \end{matrix}\right.\)

Từ \((1),(2)\Rightarrow 2a\vdots 3\). Mà $2$ không chia hết cho $3$ nên $a$ chia hết cho $3$

Có $a+b$ chia hết cho $3$ và $a$ chia hết cho $3$ nên $b$ cũng chia hết cho $3$

Do đó ta có đpcm

19 tháng 3 2016

khó quá chịu thôi

16 tháng 4 2017

Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)

\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)

Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)

Ta lại có : \(a+b+c⋮3\)

\(b⋮3\) ; \(c⋮3\)

\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)

Vậy a,b,c \(⋮3\)

4 tháng 5 2017

đây là toán lớp mấy vậy