K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

\(\widehat{A}=\widehat{C}\), \(\widehat{B}=\widehat{D}\)

\(\Rightarrow2\widehat{A}+2\widehat{D}=360^0\)

Lại có: \(\widehat{A}=2\widehat{D}\)

\(\Rightarrow2.2\widehat{D}+2\widehat{D}=360^0\)

\(\Leftrightarrow6\widehat{D}=360^0\)

\(\Leftrightarrow\widehat{D}=60^0\)

Vậy góc B = góc D = \(60^0\)

góc A = góc C = 2 lần góc D = 2.60 = \(120^0\)

4 tháng 8 2019

Thanks

1: Đặt góc A=a; góc B=b; góc C=c; góc D=d

Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360

Áp dụng tính chất của DTSBN, ta được:

a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36

=>a=36; b=72; c=108; d=144

2:

góc C+góc D=360-130-105=230-105=125

góc C-góc D=25 độ

=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ

3:

góc B=360-57-110-75=118 độ

số đo góc ngoài tại B là:

180-118=62 độ

26 tháng 7 2021

a/ Gọi x là số đo góc A tứ giác ABCD.(x>0)

Số đo góc B là x+20

Số đo góc C là 3x

Số đo góc D là 3x+20

Vì tổng số đo góc trong tứ giác là 360onên ta có phương trình:

x+x+20+3x+3x+20=360

<=>8x = 320

<=> x=40(nhận)

Vậy góc A=40O

  GÓC B=60O

GÓC C=120O

GÓC D = 140O

B/ Ta có: góc A + góc D = 40o+140o=180o

Mà 2 góc này ở vị trí trong cùng phía 

Nên AB//CD 

=> Tứ giác ABCD là hình thang

2 tháng 9 2020

1. Xét tứ giác ABCD ta có :

^A + ^B + ^C + ^D = 3600 ( định lí )

mà 4 góc đó bằng nhau 

=> ^A = ^B = ^C = ^D = 3600/4 = 900

2. Xét tứ giác ABCD ta có :

^A + ^B + ^C + ^D = 3600 ( định lí ) (1)

mà ^A , ^B , ^C , ^D lần lượt tỉ lệ với 1 ; 2 ; 4 ; 5

=> \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)(2)

Từ (1) và (2) => Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+​​\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^0}{12}=30^0\)

=> ^A = 300

     ^B = 300.2 = 600

     ^C = 300.4 = 1200

     ^D = 300.5 = 1500

2 tháng 9 2020

Xét tứ giác ABCD có các góc bằng nhau

=> \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\)

Mà \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\left(dl\right)\)

\(\Leftrightarrow4\widehat{A}=360^o\Leftrightarrow\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^o\)

Bài 2: 

Xét tứ giác ABCD 

=> \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Vì các góc tứ giác ABCD lần lượt tỉ lệ với 1:2:4:5

\(\Rightarrow\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)VÀ \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Theo tính chất dãy tỉ số bằng nhau

\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^o}{12}=30^o\)

Do đó 

\(\frac{\widehat{A}}{1}=30^o\Leftrightarrow\widehat{A}=30^o\)

\(\frac{\widehat{B}}{2}=30^o\Leftrightarrow\widehat{B}=60^o\)

\(\frac{\widehat{C}}{4}=30^o\Leftrightarrow\widehat{C}=120^o\)

\(\frac{\widehat{C}}{5}=30^o\Leftrightarrow\widehat{C}=150^o\)

Vậy.........

a) Ta thấy : A + B + C + D = 360°

Tự áp dụng tính chất dãy tỉ số bằng nhau ta có : 

A = 144° 

B = 108° 

C = 72° 

D = 36° 

b) Vì DE , CE là phân giác ADC và ACD 

=> EDC = ADE = 18° 

=> BCE = ECD = 36° 

Xét ∆DEC ta có : 

EDC + DEC + ECD = 180° 

=> DEC = 126° 

Ta có : góc ngoài tại đỉnh C

=> 180° -  BCD = 108° 

Góc ngoài tại đỉnh D 

=> 180° - ADC = 144° 

Mà DF , CF là phân giác ngoài góc C , D 

=> CDF = 72° 

=> DCF = 54° 

Xét ∆CDF ta có : 

CDF + DFC + DCF = 180° 

=> DFC = 44° 

A B C D I

a) Vì góc B + góc C = 2000

góc B + góc D = 180 0

góc C + góc D = 120 0

=> góc B + góc C + góc B + góc D + góc C + góc D = 500 0

=> 2B + 2C + 2D = 500 0

= 2( B + C + D ) = 500 0

=> B + C + D = 500 : 2 = 250 độ

Ta có:

góc B + góc C + góc D = 250 0

=> góc D = 250 - ( B + C)

= 2500 - 2000

= 50 0

=> góc B = 2500 - ( C + D)

= 2500 - 1200

= 130 0

=> góc C = 2500 - ( B + D)

= 250 - 180

= 70 độ

Vì góc A + góc B + góc C + góc D = 360 độ

=> góc A = 3600 - ( B + C + D)

= 3600 - ( 1300 + 700 + 500)

= 110 0

Vậy góc A = 110 0

góc B= 130 0

góc C = 70 0

góc D = 500

16 tháng 7 2023

a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.

Vì AB//CD, ta có góc ACD = góc BAD.

Vậy số đo góc A là 120 độ.

b) Gọi góc BCD là x độ.

Theo giả thiết, góc B phần góc D = 4/5, ta có:

góc B = (4/5) * góc D

= (4/5) * 60

= 48 độ.

Vì AB//CD, ta có góc BCD = góc BAD.

Vậy góc BAD = góc BCD = x độ.

Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.

Ta có: góc A + góc B + góc C + góc D = 360 độ.

Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:

120 + 48 + góc C + 60 = 360

góc C = 360 - 120 - 48 - 60 = 132 độ.

Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.

* Ib = bài 4

4: Sửa đề: DA=DC

a: BA=BC

DA=DC

=>BD là trung trực của AC

b: góc A+góc C=360-120-80=160 độ

Xét ΔBAD và ΔBCD có

BA=BD

AD=CD

BD chung

=>ΔBAD=ΔBCD

=>góc BAD=góc BCD=160/2=80 độ

 

3: Nếu bốn góc trong tứ giác đều là góc nhọn thì chắc chắn tổng 4 góc cộng lại sẽ nhỏ hơn 360 độ

=>Trái với  định lí tổng 4 góc trong một tứ giác

Nếu bốn góc trong tứ giác đều là góc tù thì chắc chắn tổng 4 góc cộng lại sẽ lớn hơn 360 độ

=>Trái với định lí tổng 4 góc trong một tứ giác

Do đó: 4 góc trong 1 tứ giác không thể đều là góc nhọn hay đều là góc tù được

22 tháng 10 2018

Kí hiệu: ∠ : góc

Các góc của tứ giác là ∠A, ∠B, ∠C, ∠D (∠A > 0) tạo thành cấp số cộng:

⇒ ∠B = ∠A + d,

    ∠C = ∠A + 2d,

    ∠D = ∠A + 3d.

Theo giả thiết, góc C gấp năm lần góc A nên:

    ∠C = 5∠A

⇒ ∠A + 2d = 5∠A

⇒ 2d = 4∠A

hay d = 2.∠A

Tổng 4 góc của 1 tứ giác bằng 360º nên ta có:

⇒ ∠A + ∠B + ∠C + ∠D = 360º

⇒ ∠A + ∠A + d + ∠A + 2d + ∠A + 3d = 360º

=> 4∠A +6d = 360º

⇒ 4∠A + 12∠A = 360º ( do d = 2.ºA)

⇒ 16∠A = 360º

⇒ ∠A = 22º30'

⇒ d = 45º.

Vậy ∠A = 22º30' ; ∠B = 67º30'; ∠C = 112º30’; ∠D = 157º30'