K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

toán lớp 7 sạo ?!!!

21 tháng 2 2018

cua anh tao

Bạn tự vẽ hình dc ko nếu có trả lời để mik giải cho

18 tháng 11 2016

Các bạn giúp mik với

Câu A và B mik ra rồi

CHỉ cần câu C thôi

 

18 tháng 11 2016

hjhj em cung po tay rụ

vui

29 tháng 7 2015

Lấy F \(\in\) BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120=> góc BOF = góc COF = 60o 
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120=> góc DOC = góc EOB = 60o
Từ đó có 

  • Tam giác BEO = Tam giác BFO (g.c.g)
  • ​Tam giác CDO = Tam giác CFO (g.c.g)
  • => OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
  • => BE = BF và CD = CF 

 Mà BF+CF=BC => BE + CD = BC

Nếu có gì chưa hiểu thì bạn nhắn lại cho minh , cho mình tick đúng nha

9 tháng 12 2017

Lấy F ∈ BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120
o => góc BOF = góc COF = 60
o
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120
o => góc DOC = góc EOB = 60
o
Từ đó có
Tam giác BEO = Tam giác BFO (g.c.g)
Tam giác CDO = Tam giác CFO (g.c.g)
=> OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
=> BE = BF và CD = CF
Mà BF+CF=BC => BE + CD = BC

17 tháng 1 2020

A B C O H N M

Số đo góc chưa chính xác :(

Gọi giao điểm của \(BM\) và \(CN\)là \(O\)

Từ \(O\)kẻ \(OH\)là phân giác \(\widehat{BOC}\)\(\left(H\in BC\right)\)

Xét \(\Delta ABC\)có:

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\) (định lí tổng ba góc \(\Delta\))

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-60^o=120^o\)

Ta có:

\(\widehat{OBC}=\widehat{OBA}=\frac{\widehat{ABC}}{2}\) (\(OB\): phân giác \(\widehat{ABC}\))

\(\widehat{OCB}=\widehat{OCA}=\frac{\widehat{ACB}}{2}\) (\(OC\): phân giác \(\widehat{ACB}\))

\(\Rightarrow\widehat{OBC}+\widehat{OCB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{120^o}{2}=60^o\)

Xét \(\Delta BOC\)có:

\(\widehat{OBC}+\widehat{OCB}+\widehat{BOC}=180^o\) (định lí tổng ba góc \(\Delta\))

\(\Rightarrow\widehat{BOC}=180^o-60^o=120^o\)

Ta có:

\(\widehat{BOH}=\widehat{HOC}=\frac{\widehat{BOC}}{2}=\frac{120^o}{2}=60^o\) (\(OH\): phân giác \(\widehat{BOC}\))

Ta có:

\(\widehat{BOC}+\widehat{BON}=180^o\) (kề bù)

\(\Rightarrow\widehat{BON}=180^o-120^o=60^o\)

\(\Rightarrow\widehat{BON}=\widehat{BOH}\left(=60^o\right)\)

Ta có:

\(\widehat{BOC}+\widehat{COM}=180^o\) (kề bù)

\(\Rightarrow\widehat{COM}=180^o-120^o=60^o\)

\(\Rightarrow\widehat{COM}=\widehat{HOC}\left(=60^o\right)\)

Xét \(\Delta BON\)và \(\Delta BOH\)có:

\(\widehat{OBN}=\widehat{OBH}\) (\(OB\): phân giác \(\widehat{ABC}\))

\(OB\): chung

\(\widehat{BON}=\widehat{BOH}\) (cmt)

\(\Rightarrow\Delta BON=\Delta BOH\left(g.c.g\right)\)

\(\Rightarrow BN=BH\) (2 cạnh tương ứng)

Xét \(\Delta COM\)và \(\Delta COH\)có:

\(\widehat{COM}=\widehat{COH}\) (cmt)

\(OC\) : chung

\(\widehat{MCO}=\widehat{HCO}\) (\(OC\): phân giác \(\widehat{ACB}\))

\(\Rightarrow\Delta COM=\Delta COH\left(g.c.g\right)\)

\(\Rightarrow MC=HC\) (2 cạnh tương ứng)

Ta có:

\(BC=BH+HC\)

Mà \(\hept{\begin{cases}BN=BH\\MC=HC\end{cases}}\)

\(\Rightarrow BC=BN+MC\left(đpcm\right)\)

9 tháng 12 2016

Hình học lớp 7a)ta có tổng ba góc củaΔABC =180'

mà góc A= 60'

--->góc ABC + góc ACB = 180' - 60' = 120' (1)

Vì BD là tia phân giác của góc ABC

--->góc B1 = góc B2 (2)

Vì CE là tia phân giác của góc ACB

---> góc C1 = góc C2 (3)

Từ 1,2,3

--->B1 + C1 = B2 + C2 = 1/2 góc ABC +ACB

=1/2 . 120' =60'

ta có ΔBIC có BIC + B2 + C2 =180'

B2 + C2 =60' --->góc BIC = 180-60=120'

b)

Ta có góc I1 + góc BIC = 180' ( kề bù)

mà góc BIC = 120'

--->góc I1 = 180' -120'=60'

--->góc I1 = góc 4 =60' (đối đỉnh)

Vẽ IK là tia phân giác của góc BIC

---> góc I2 = góc I3 =60'

Xét ΔEIB và ΔKIB có :

góc B1 = góc B2 ( BD là tia phân giác )(

góc I1 = góc I2 =60'

BI : cạnh chung

---> ΔEIB = ΔKIB ( g.c.g)

--->EB = BK ( hai cạnh tương ứng )

Xét ΔDIC và ΔKIC có :

IC : cạnh chung

góc C1 = góc C2( Ci là tia phân giác )

góc C3 = góc C4 =60'

--->ΔDIC = ΔKIC (g.c.g)

--->DC = KC ( hai cạnh tương ứng )

Vì EB = BK ; DC = KC

--->BK + KC = BC = EB + DC

 

 

 

 

 

 

 

 

 

6 tháng 2 2020

A B C E D F O

a) +) Ta có:

^BOC = 90\(^o\)\(\frac{\widehat{BAC}}{2}\)= 120\(^o\)

+) OF là phân giác của ^BOC 

=> ^BOF = ^COF = 60\(^o\)

+) Ta có: ^BOE + ^BOC = 180\(^o\)

=> ^BOE = 180\(^o\)- 120 \(^o\)= 60 \(^o\)

=> ^DOC = ^BOE = 60 \(^o\) ( đối đỉnh)

+) Xét \(\Delta\)OBF và \(\Delta\)OBE có:

^BOF = ^BOE = 60\(^o\)

OB chung 

^OBF = ^OBE ( BO là phân giác ^EBF )

=> \(\Delta\)OBF = \(\Delta\)OBE 

=> OE = OF (1)

+) Xét \(\Delta\)ODC và \(\Delta\)OFC có:

^DOC = ^FOC = 60\(^o\)

OC chung 

^DCO = ^FCO ( CO là phân giác ^DCF )

=> \(\Delta\)ODC = \(\Delta\)OFC 

=> OD = OF (2)

Từ (1); (2) => OD = OE = OF
b) Ta có: OE = OF => \(\Delta\)OEF cân và ^EOF = ^EOB + ^FOB = 60\(^o\)+60\(^o\)=120\(^o\)

=> ^OEF = ^OFE = ( 180\(^o\)-120\(^o\)) : 2 = 30 \(^o\)

Tương tự ta có thể chứng minh đc:

^OFD = ^ODF = 30\(^o\)

^OED = ^ODE = 30\(^o\)

=> ^DFE = ^DEF = ^EDF = 30\(^o\)+30\(^o\)= 60\(^o\)

=> Tam giác DEF đều 

6 tháng 2 2020

Tại sao ^BOC = 90\(^o+\frac{\widehat{BAC}}{2}\). Em nên nhớ nó bởi vì sẽ ứng dụng vào rất nhiều bài.

Xét \(\Delta\)BOC có: ^BOC + ^BCO + ^CBO = 180\(^o\)

=> ^BOC = 180\(^o\)- ( ^BCO + ^CBO ) = 180\(^o\)- ( \(\frac{1}{2}\)^BCA + \(\frac{1}{2}\)^CBA) = 180\(^o\)- \(\frac{1}{2}\)( ^BCA + ^CBA) (1)

Xét \(\Delta\)ABC có: ^BAC + ^BCA + ^ABC = 180\(^o\)=> ^BCA + ^ABC = 180\(^o\)- ^BAC (2)

Từ (1); (2) =>  ^BOC = 180\(^o\) - \(\frac{1}{2}\)( 180\(^o\) - ^BAC ) = 90\(^o\)+  \(\frac{\widehat{BAC}}{2}\)