K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 10 2023

Đoạn:

2x
2 + 2y
2 − 3z
2= -100 là như thế nào bạn nhỉ?

Bạn viết lại đề để mọi người hiểu hơn nhé.

21 tháng 1 2023

xy+x+y=4

(x+1)y+x=4

(x+1)y+x-4=0

=>x+1=0

=>x=-1

=>y+1=0

=>y=-1

@Taoyewmay

=>x(y+1)+y+1=5

=>(x+1)(y+1)=5

=>\(\left(x+1;y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;4\right);\left(4;0\right);\left(-2;-6\right);\left(-6;-2\right)\right\}\)

4 tháng 4 2022

\(\dfrac{x}{4}=\dfrac{y}{4}=\dfrac{z}{5}=>\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)

AD t/c của dãy tỉ số bằng nhâu ta có

\(\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{32+32-75}=\dfrac{-100}{-11}=\dfrac{100}{11}\)

\(=>\left[{}\begin{matrix}x=\dfrac{400}{11}\\y=\dfrac{400}{11}\\z=\dfrac{500}{11}\end{matrix}\right.\)

4 tháng 4 2022

lần đầu thấy tự làm nha:))

1 tháng 12 2023

Để giải phương trình xy + 2x - y = 9, ta có thể sử dụng phương pháp hoán vị.

 

Đặt u = x - 1 và v = y + 2, ta có:

 

(u + 1)(v - 2) + 2(u + 1) - (v - 2) = 9

 

Mở ngoặc và đơn giản hóa, ta được:

 

uv + u + 2v - 4 + 2u + 2 - v + 2 = 9

 

Kết hợp các thành phần tương tự, ta có:

 

uv + 3u + v = 9

 

Thêm 3 cả hai vế của phương trình, ta có:

 

uv + 3u + v + 3 = 12

 

Nhân cả hai vế của phương trình với 4, ta có:

 

4uv + 12u + 4v + 12 = 48

 

Nhóm các thành phần tương tự, ta có:

 

(4u + 1)(v + 3) = 48

 

Ta cần tìm các cặp giá trị nguyên dương (u, v) sao cho (4u + 1)(v + 3) = 48.

 

Các cặp giá trị nguyên dương (u, v) thỏa mãn phương trình trên là:

 

(1, 45), (3, 15), (5, 9), (9, 5), (15, 3), (45, 1)

 

Quay lại định nghĩa của u và v, ta có:

 

x - 1 = u → x = u + 1

y + 2 = v → y = v - 2

 

Vậy, các cặp giá trị nguyên dương (x, y) thỏa mãn phương trình ban đầu là:

 

(2, 43), (4, 13), (6, 7), (10, 3), (16, 1), (46, -1)

 

Tuy nhiên, để thỏa mãn y ∈ N, ta chỉ lấy các giá trị y là số tự nhiên dương.

 

Vậy, các cặp giá trị nguyên dương (x, y) thỏa mãn phương trình ban đầu là:

 

(6, 7), (10, 3)

xy+2x-y=9

=>x(y+2)-y-2=7

=>x(y+2)-(y+2)=7

=>(x-1)(y+2)=7

\(\Leftrightarrow\left(x-1;y+2\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;5\right);\left(8;-1\right);\left(0;-9\right);\left(-6;-3\right)\right\}\)

mà x,y đều là số tự nhiên

nên \(\left(x,y\right)\in\left(2;5\right)\)

27 tháng 8 2021

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

27 tháng 8 2021

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737