Tính \(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{190}\)
Tinh S biet S=1+\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{10}+\frac{1}{32}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.S= 1/ 5.6 =1/ 6.7 +1/ 7.8 +...+1/ 19.20
2.S= 1/5-1/20
2S= 3/20
\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)
\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)
\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)
\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)
\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)
\(S=\frac{9}{12}\)
\(S=\frac{3}{4}\)
\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{2^n}=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)
=>\(\frac{S}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n+1}}\)
=> \(\frac{S}{2}-S=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{n+1}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^n}\right)\)
=> \(-\frac{S}{2}=\frac{1}{2^{n+1}}-1\)
=> S= \(2-\frac{1}{2^n}\)
21)
\(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).....\left(1+\dfrac{1}{9999}\right)\\ =\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{10000}{9999}\\ =\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{100.100}{99.101}\\ =\dfrac{2.3.4.....100}{1.2.3.....99}.\dfrac{2.3.4.....100}{3.4.5.....101}\\ =100.\dfrac{2}{101}\\ =\dfrac{200}{101}\)
lấy (1/3 + 1/15 +1/10 + 1/21 ) + (1/36 + 1/28 + 1/6) + (1/45 + 1/55)
= (4/50 + 3/70) + 2/100
= 7/120 + 2/100
= 9/220