K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

undefined

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=3mx+1-m^2\)

\(\Leftrightarrow x^2-3mx+m^2-1=0\)

Để (d) cắt (P) tại hai điểm phân biệt thì phương trình hoành độ giao điểm của (P) và (d) có hai nghiệm phân biệt

\(\Leftrightarrow\text{Δ}\ge0\)

\(\Leftrightarrow\left(-3m\right)^2-4\cdot1\cdot\left(m^2-1\right)\ge0\)

\(\Leftrightarrow9m^2-8m^2+4\ge0\)

\(\Leftrightarrow m^2+4\ge0\)(luôn đúng)

Suy ra: (P) và (d) luôn cắt nhau tại hai điểm phân biệt với mọi m

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1\cdot x_2=m^2-1\\x_1+x_2=3m\end{matrix}\right.\)

Theo đề, ta có phương trình: \(3m=2\cdot\left(m^2-1\right)\)

\(\Leftrightarrow2m^2-2-3m=0\)

\(\Leftrightarrow2m^2-4m+m-2=0\)

\(\Leftrightarrow2m\left(m-2\right)+\left(m-2\right)=0\)

\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\2m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\2m=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy: Để (d) cắt (P) tại hai điểm phân biệt có hoành độ \(x_1;x_2\) thỏa mãn \(x_1+x_2=2x_1x_2\) thì \(m\in\left\{2;-\dfrac{1}{2}\right\}\)

21 tháng 3 2021

Xét phương trình hoành độ giao điểm parabol $(P)$ và đường thẳng $(d)$

Có: $x^2=3mx+1-m^$

$⇔x^2-3mx+m^2-1=0(1)$

Xét phương trình (1) có dạng $ax^2+bx+c=0$ với
$\begin{cases}a=1 \neq 0\\b=-3m\\c=m^2-1\end{cases}$

$⇒pt(1)$ là phương trình bậc hai một ẩn $x$

Có $\delta=b^2-4ac=9m^2-4.1.(m^2-1)=5m^2+4>0 \forall m$

suy ra $pt(1)$ có 2 nghiệm phân biệt $x_1;x_2$

Theo hệ thức Viete có: $\begin{cases}x_1+x_2=\dfrac{-b}{a}=3m\\x_1.x_2=\dfrac{c}{a}=m^2-1\end{cases}$

Nên $x_1+x_2=2x_1.x_2$

$⇔3m=2.(m^2-1)$

$⇔2m^2-3m-2=0$

$⇔(m-2)(2m+1)=0$

$⇔$\(\left[{}\begin{matrix}m=2\\m=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy $m∈2;\dfrac{-1}{2}$ thỏa mãn đề

 

5 tháng 8 2021

Phương trình hoành độ giao điểm:

`mx-3=x^2`

`<=>x^2-mx+3=0` (1)

(P) cắt (d) tại 2 điểm phân biệt `<=>` PT (1) có 2 nghiệm phân biệt.

`<=> \Delta >0`

`<=>m^2-3>0`

`<=> m<-\sqrt3 \vee m>\sqrt3`

Viet: `{(x_1+x_2=m),(x_1x_2=3):}`

`|x_1-x_2|=2`

`<=>(x_1-x_2)^2=4`

`<=> (x_1+x_2)^2-4x_1x_2=4`

`<=>m^2-4.3=4`

`<=>m= \pm 4` (TM)

Vậy....

22 tháng 4 2021

Phương trình hoành độ giao điểm là :

\(-x^2=mx+2\)

\(\Leftrightarrow x^2+mx+2=0\)

Lại có : \(\Delta=m^2-8>0\)

Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=2\end{matrix}\right.\)

\(\left(x1+1\right)\left(x2+1\right)=0\)

\(\Leftrightarrow x1x2+x1+x1+1=0\)

\(\Leftrightarrow2-m+1=0\Leftrightarrow m=3\)

 

−x2=mx+2

⇔x2+mx+2=0

chúng ta sẽ lại có : Δ=m2−8>0

Theo định lí Vi - et ta có :

{x1+x2=−mx1x2=2

\(\trái(x1+1\phải)\trái(x2+1\phải)=0\)

⇔x1x2+x1+x1+1=0

30 tháng 10 2021

PTHĐGĐ là:

\(-x^2=-mx+m-1\)

\(\Leftrightarrow x^2-mx+m-1=0\)

\(\Delta=\left(-m\right)^2-4\cdot1\left(m-1\right)\)

\(=m^2-4m+4\)

\(=\left(m-2\right)^2\ge0\forall m\)

Do đó: Phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:,

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=17\)

\(\Leftrightarrow m^2-2\left(m-1\right)-17=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)

NV
24 tháng 1 2022

Phương trình hoành độ giao điểm:

\(x^2=2\left(m-2\right)x+5\Leftrightarrow x^2-2\left(m-2\right)x-5=0\)

Do \(ac=-5< 0\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu

\(\Rightarrow x_1< 0< x_2\Rightarrow x_2+2>0\)

Theo hệ thức Viet: \(x_1+x_2=2\left(m-2\right)\)

Ta có:

\(\left|x_1\right|-\left|x_2+2\right|=10\)

\(\Leftrightarrow-x_1-x_2-2=10\)

\(\Leftrightarrow-2\left(m-2\right)=12\)

\(\Leftrightarrow m=-4\)

PTHĐGĐ là;

x^2-6x+m-3=0

Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48

Để PT có hai nghiệm phân biệt thì -4m+48>0

=>m<12

(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2

=>(x1-1)(-x1x2+x2+x1x2-1)=2

=>x1x2-(x1+x2)+1=2

=>m-3-6+1=2

=>m-8=2

=>m=10

30 tháng 9 2019

Đáp án B

31 tháng 10 2021

Tại sao m+4 lại khác 0 ạ? Mình tưởng 2 no pb thì >0 chứ ạ 

22 tháng 3 2023

x_{1}x_{2} là x1 và x2