chứng minh rằng trong n số tự nhiên bất kỳ luôn tồn tại một số chia hết cho n hoặc một số có tổng chia hết cho n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài là 2011 chính xác hơn ( tất nhiên 2001 vẫn đúng, nhưng 2011 sẽ là số sát với lời giải hơn).
Ta làm như sau: Một số tự nhiên khi chia 2011 sẽ có thể có 2011 số dư 0;1;2;...;2010.
Chia các số dư này thành các nhóm 0, (1;2010), (2;2009),....,(1005;1006).
Có 1006 nhóm, mà có 1007 số nên theo nguyên lý Đirichle sẽ có 2 số ở cùng 1 nhóm. 2 số này sẽ có tổng hoặc hiệu chia hết cho 2011
Đề bài là 2011 chính xác hơn ( tất nhiên 2001 vẫn đúng, nhưng 2011 sẽ là số sát với lời giải hơn). Ta làm như sau: Một số tự nhiên khi chia 2011 sẽ có thể có 2011 số dư 0;1;2;...;2010. Chia các số dư này thành các nhóm 0, (1;2010), (2;2009),....,(1005;1006). Có 1006 nhóm, mà có 1007 số nên theo nguyên lý Đirichle sẽ có 2 số ở cùng 1 nhóm. 2 số này sẽ có tổng hoặc hiệu chia hết cho 2011
có mấy người đi ăn xin li+ke kìa bà con cô bác ơi
Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều
nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng
hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.