Chứng minh rằng: ( 6 + 62 + 63 + 64 ) chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+.......+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}\)
\(\Rightarrow S< \frac{1}{17}+\frac{1}{17}+......+\frac{1}{17}+\frac{1}{17}+\frac{1}{17}\)
\(\Rightarrow S< \frac{1}{17}.48\)
\(\Rightarrow S< \frac{48}{17}\)
\(\Rightarrow S< 2\)( 1 )
Lại có :
\(S>\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}+\frac{1}{64}+\frac{1}{64}\)
\(\Rightarrow S>\frac{1}{64}.48\)
\(\Rightarrow S>\frac{3}{4}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{3}{4}< S< 2\)
Vậy \(1< S< 2\left(ĐPCM\right)\)
A=21+22+23+...+261+262+263
A=(21+22+23)+...+(261+262+263)
A=14+...+261.(21+22+23)
A=14+...+261.14 chia hết cho 14
tick ủng hộ mình nha
17a +13b 9c = 3a +6b +9c +14a +7b
=3﴾a+2b+3c﴿ +14a +7b
a+2b+3c chia hết cho 7
=> 3﴾a+2b+3c﴿ chia hết cho 7
14a chia hết cho 7
7b chia hết cho 7
từng số chia hết cho 7, tổng của chúng chắc chắn chia hết cho 7
(chọn đúng với nha bạn)
Ta có: \(6+6^2+6^3+6^4=\left(6+6^2\right)+6^2\times\left(6+6^2\right)=\left(6+6^2\right)\times\left(1+6^2\right)=42\times\left(1+6^2\right)=6\times7\times\left(1+6^2\right)\)
Mà \(6\times7\times\left(1+6^2\right)\) chia hết cho 7
=> \(6+6^2+6^3+6^4\) chia hết cho 7