Cho nửa đường tròn tâm (O) đường kính AB = 2R. I là trung điểm của OA, IK vuông góc với AB cắt nửa đường tròn tại K. Điểm C bất kỳ thuộc đoạn IK, AC cắt nửa đường tròn tại M. Tiếp tuyến tại M cắt IK tại N; IK cắt BM tại D. Chứng minh tam giác CMN cân Tính CD theo R trường hợp C là trung điểm của IK. c) Gọi E là điểm đốia xứng của B qua I. Chứng minh khi C chuyển động trên IK thì tâm đường tròn ngoại tiếp ACD di động trên một đường cố định.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AT
23 tháng 6 2021
a) Vì AB là đường kính \(\Rightarrow\angle AMB=90\Rightarrow\angle ACD=\angle AMD=90\)
\(\Rightarrow ACMD\) nội tiếp
b) Ta có: \(\angle KCB+\angle KMB=90+90=180\Rightarrow KCBM\) nội tiếp
\(\Rightarrow\angle AKC=\angle MBA\)
Ta có: \(\angle NMK=\angle MBA=\angle AKC=\angle MKN\)
\(\Rightarrow\Delta NMK\) cân tại N
c) Vì B và E đối xứng với nhau qua C \(\Rightarrow\) CD là trung trực BE
\(\Rightarrow\angle DEC=\angle DBC=\angle AKC\Rightarrow AKDE\) nội tiếp
16 tháng 4 2023
góc ECM=góc ECA=1/2*sđ cung AC
góc EMC=góc AMI=góc ABC=1/2*sđ cung AC
=>góc ECM=góc EMC
=>ΔEMC cân tại E