1.Cho hình bình hành ABCD , điểm G chia trong cạnh DC theo tỉ số 1:2 điểm K chia trong cạnh BC theo tỉ số 3:2.Tính độ dài 3 đoạn thẳng do AG, AK định trên BD , biết rằng BD=16cm
2.Đường thẳng đi qua trung điểm các cạnh đối AB,CD của tứ giác ABCD cắt các đường thẳng AD và BC theo thứ tự I và K . Cmr :
IA:ID=KB:KC
3. Cho tam giác ABC vuông cân tại A , đường trung tuyến BM .Trên cạnh BC lấy điểm D sao cko BD=BE=EC , Biết AD=10 , AE=15. Tính độ dài BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BK=3/2KD➩BK=3/5BD=3/5.32=19,2..Chưa đủ dữ liệu xem lại đề nha
Dễ thấy rằng \(\dfrac{DG}{DC}=\dfrac{1}{3}\) và \(\dfrac{BK}{BC}=\dfrac{3}{5}\)
Ta thấy \(\dfrac{DE}{EB}=\dfrac{DG}{AB}=\dfrac{DG}{CD}=\dfrac{1}{3}\) \(\Rightarrow\dfrac{DE}{BD}=\dfrac{1}{4}\) \(\Rightarrow DE=\dfrac{1}{4}BD=\dfrac{1}{4}.24=6\left(cm\right)\)
Mặt khác \(\dfrac{FB}{FD}=\dfrac{BK}{AD}=\dfrac{BK}{BC}=\dfrac{3}{5}\) \(\Rightarrow\dfrac{FB}{BD}=\dfrac{3}{8}\) \(\Rightarrow FB=\dfrac{3}{8}BD=\dfrac{3}{8}.24=9\left(cm\right)\)
\(\Rightarrow EF=BD-DE-FB=24-6-9=9\left(cm\right)\)
Vậy \(DE=6cm;EF=FB=9cm\)
a) Ta thấy \(\dfrac{EA}{EK}=\dfrac{ED}{EB}=\dfrac{EG}{EA}\) nên \(AE^2=EK.EG\) (đpcm)
b) Ta có \(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{BD}=\dfrac{DE+BE}{BD}=1\) nên suy ra \(\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)