K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2014

a.Xét 2 TG AMB và EMC; ta có:

  MA=ME(gt); MB=MC( vì M là trung điềm BC); BMA=EMC( đối đỉnh)

=>TG AMB=TG EMC(c.g.c)

b. TG AMB= TG EMC=> BAM=MEC(2 góc tương ứng)

 mà chung lại ờ vị trí slt

=>AB//CE

17 tháng 12 2016

a.Xét tam giác ABM và tam giác ECM có:

MA=ME(gt)

MB=MC(gt)

góc AMB=góc EMC(đối đỉnh)

Do đó tam giác ABM=tam giác ECM(c.g.c)

b. Vì tam giác ABM= tam giác ECM

=>góc AMB=góc CME(2 góc tương ứng)

=>AB//CE(2 góc bằng nhau ở vị trí so le trong)

Nhớ vẽ hình cho dễ so sánh nha bạn

29 tháng 12 2023

a: Xét ΔAMB và ΔEMC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔEMC

b: Ta có: ΔAMB=ΔEMC

=>AB=CE
Ta có: ΔAMB=ΔEMC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//EC

c: Xét ΔHAM và ΔKEM có

HA=KE

\(\widehat{HAM}=\widehat{KEM}\)

AM=EM

Do đó: ΔHAM=ΔKEM

=>\(\widehat{AMH}=\widehat{EMK}\)

mà \(\widehat{AMH}+\widehat{HME}=180^0\)(hai góc kề bù)

nên \(\widehat{EMK}+\widehat{HME}=180^0\)

=>H,M,E thẳng hàng

21 tháng 1 2022

a. Xét △ABM và △DCM:

\(AM=MD\left(gt\right)\)

\(\hat{AMB}=\hat{DMC}\) (đối đỉnh)

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

 

b. Từ a. => \(\hat{MCD}=\hat{MBA}\) (2 góc tương ứng). Mà hai góc này ở vị trí so le trong

\(\Rightarrow CD\text{ // }AB\left(a\right)\)

 

c. Xét △CIK và △AIB:

\(AI=IC\left(gt\right)\)

\(\hat{AIB}=\hat{CIK}\) (đối đỉnh)

\(BI=IK\left(gt\right)\)

\(\Rightarrow\Delta CIK=\Delta AIB\left(c.g.c\right)\Rightarrow\hat{ICK}=\hat{IAB}\). Mà hai góc ở vị trí so le trong

\(\Rightarrow AB\text{ // }CK\left(b\right)\)

Từ (a) và (b), theo tiên đề Ơ-clit \(\Rightarrow AB\text{ // }DK\)

Vậy: D, C, K thẳng hàng (đpcm).

21 tháng 1 2022

a) Xét tam giác ABM và tam giác DCM:

BM = CM (M là trung điểm BC).

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).

MA = MD (cmt).

\(\Rightarrow\) Tam giác ABM = Tam giác DCM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{CDM}\) (Tam giác ABM = Tam giác DCM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) CD // AB (dhnb).

c) Xét tứ giác AKCB có:

I là trung điểm AC (gt).

I là trung điểm BK (IB = IK).

\(\Rightarrow\) Tứ giác AKCB là hình bình hành (dhnb).

\(\Rightarrow\) CK // AB (Tính chất hình bình hành).

Mà CD // AB (cmt).

\(\Rightarrow\) D, C, K thẳng hàng.

12 tháng 11 2021

a: Xét tứ giác ACEB có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ACEB là hình bình hành

Suy ra: AC//BE

19 tháng 12 2021

a: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

21 tháng 12 2021

a: Xét tứ giác ABEC có

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU