Chứng tỏ đẳng thức sau là đúng:
1=2^1-1
1+2=2^2-1
1+2+2^2=2^3-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh: mk làm luôn nè:
Ta có: \(\frac{10}{11}>\frac{10}{11+12};\frac{11}{12}>\frac{11}{11+12}\)
\(\Rightarrow\frac{10}{11}+\frac{11}{12}>\frac{10}{11+12}+\frac{11}{11+12}\)
\(\Rightarrow\frac{10}{11}+\frac{11}{12}>\frac{10+11}{11+12}\)
MK KO BIẾT ĐÚNG KO NỮA NÊN BN CÓ THỂ THAM KHẢO CỦA CÁC BẠN KHÁC NHÉ.!!
CHÚC BẠN HỌC TỐT. ^_^
Câu a bạn sửa lại đề 11→1
\(a,VT=\dfrac{a^2-2a+1}{\left(a-1\right)\left(a^2+1\right)}\cdot\dfrac{a^2+1}{a^2+a+1}\\ =\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}=\dfrac{a-1}{a^2+a+1}=VP\)
\(b,=\left[\dfrac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}-x\right]\cdot\dfrac{\left(1+x\right)\left(1-x^2\right)}{1+x}\\ =\dfrac{\left(x^2+1\right)\left(1+x\right)\left(1-x^2\right)}{1+x}=\left(x^2+1\right)\left(1-x^2\right)=VP\)
a) \(\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2+11\right)\)
\(=\left(6x^2+23x+21\right)-\left(6x^2+23x-55\right)\)
\(=21+55=76\)
Vậy gt của bt không phụ thuộc vào gt của biến
b) \(\left(3x^2-2x+1\right)\left(x^2+2x+3\right)-4x\left(x^2-1\right)-3x^2\left(x^2+2\right)\)
\(=3x^4+4x^3+6x^2-4x+3-4x^3+4x-3x^4-6x^2\)
\(=3\)
Vật gt của bt không phụ thuộc vào gt của biến
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
\(2^1-1=2-1=1\) => \(1=2^1-1\)
\(\hept{\begin{cases}1+2=3\\2^2-1=4-1=3\end{cases}}\) => \(1+2=2^2-1\)
\(\hept{\begin{cases}1+2+2^2=7\\2^3-1=8-1=7\end{cases}}\) => \(1+2+2^2=2^3-1\)