CMR: \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
3A = 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
4A = ( 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\) ) + ( \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) )
= 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
Đặt B = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\)
3B = 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\)
4B = ( 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\) ) + ( 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\) )
= 3 - \(\dfrac{1}{3^{99}}\)
B = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\)
⇒ 4A = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\) - \(\dfrac{100}{3^{100}}\)
A = \(\dfrac{3}{16}-\dfrac{1}{3^{99}\cdot4^2}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Vậy A < \(\dfrac{3}{16}\)
Đặt \(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
\(\Rightarrow A+3A=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow4A=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\) (1)
\(\Rightarrow12A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\) (2)
Cộng vế (1) và (2):
\(\Rightarrow16A=3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow16A< 3\)
\(\Rightarrow A< \dfrac{3}{16}\)
Đặt `A` `=` `1/3 - 2/3^2+3/3^3 - 4/3^4+ ... + 99/3^99-100/3^100`
`=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99`
`=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100`
`=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99`
`=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...`
`=>16A=3-101/3^99-100/3^100`
`<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16`
`=> A<3/16`
@Nae
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
https://olm.vn/hoi-dap/question/189951.html