Giã sử đường tròn tâm I bán kính r nội tiếp tam giác ABC và tiếp xúc với các cạnh BC, CA,AB theo thứ tự tại M,N,P
CMR: \(\frac{S_{ABC}}{S_{MNP}}=\frac{IA.IB.IC}{2r^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Bài giải
Hình tự vẽ //
a) Ta có DOC = cung DC
Vì DOC là góc ở tâm và DAC là góc chắn cung DC
=>DOC = 2 . AOC (1)
mà tam giác AOC cân =>AOC=180-2/AOC (2)
Từ (1) ; (2) ta được DOC + AOC = 180
b) Góc ACD là góc nội tiếp chắn nữa đường tròn
=>ACD=90 độ
c) c) HC=1/2*BC=12
=>AH=căn(20^2-12^2)=16
Ta có Sin(BAO)=12/20=>BAO=36.86989765
=>AOB=180-36.86989765*2=106.2602047
Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)
<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2
=>OA=12.5
Gọi F là trung điểm MN.\(C_1\) là tiếp điểm của (P) và (Q).\(FC_1\) cắt AB,AC tại D,E.
\(\Rightarrow\left(P\right),\left(Q\right)\) lần lượt là đường tròn nội tiếp của \(\Delta DBF,\Delta EFC\)
Dễ dàng chứng minh được PQNM là hình chữ nhật (có 3 góc vuông)
\(\Rightarrow FC_1\bot BC\)
Xét \(\Delta DFB\) và \(\Delta CFE:\) Ta có: \(\left\{{}\begin{matrix}\angle EFC=\angle BFD=90\\\angle ECF=\angle BDF=90-\angle ABC\end{matrix}\right.\)
\(\Rightarrow\Delta DFB\sim\Delta CFE\left(g-g\right)\)
mà bán kính đường tròn nội tiếp \(\Delta DFB,\Delta CFE\) bằng nhau
\(\Rightarrow\Delta DFB=\Delta CFE\Rightarrow DF=FC\Rightarrow\Delta DFC\) vuông cân tại F
Ta có: \(\angle DAC=\angle DFC=90\Rightarrow DAFC\) nội tiếp
\(\Rightarrow\angle FAC=\angle FDC=45\Rightarrow\) AF là phân giác \(\angle BAC\Rightarrow\) đpcm
HÌnh bạn tự vẽ.
Bổ đề: (định lý Ptô-lê-mê)
Trong một tứ giác nội tiếp ABCD, ta có:
AC . BD = AB . CD + BC . AD
Áp dụng bổ đề trên cho tứ giác nội tiếp IPAN, ta có IA.NP = IP.AN + IN.AP = 2r(p - a) (ở đây ta đặt BC = a, CA = b, AB = c) và
\(p=\frac{a+b+c}{2}\) thì AN = AP = p - a.
Tương tự IB . PM = 2r(p - b)
IC . MN = 2r(p - c)
Nhân theo vế ba đẳng thức trên ta được:
\(IA.IB.IC.MN.NP.PM=8r^3\left(p-a\right)\left(p-b\right)\left(p-c\right)\).
Mặt khác, vì r là bán kính đường tròn ngoại tiếp \(\Delta MNP\)nên MN.NP.PM = \(4rS_{MNP}\).
Ngoài ra theo công thức Hê-rông ta có:
\(S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\).Do đó:
IA . IB . IC. 4rSMNP = \(\frac{8r^3.S^2_{ABC}}{p}=8r^4S_{ABC}\)(vì SABC = pr), suy ra đpcm
P/s: Chỗ nào không hiểu thì bạn chỉ việc vẽ hình ra và quan sát hình là được :))