K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

HÌnh bạn tự vẽ.

Bổ đề: (định lý Ptô-lê-mê)

Trong một tứ giác nội tiếp ABCD, ta có:

AC . BD = AB . CD + BC . AD

Áp dụng bổ đề trên cho tứ giác nội tiếp IPAN, ta có IA.NP = IP.AN + IN.AP = 2r(p - a) (ở đây ta đặt BC = a, CA = b, AB = c) và

\(p=\frac{a+b+c}{2}\) thì AN = AP = p - a.

Tương tự IB . PM = 2r(p - b)

                 IC . MN = 2r(p - c)

Nhân theo vế ba đẳng thức trên ta được:

\(IA.IB.IC.MN.NP.PM=8r^3\left(p-a\right)\left(p-b\right)\left(p-c\right)\).

Mặt khác, vì r là bán kính đường tròn ngoại tiếp \(\Delta MNP\)nên MN.NP.PM = \(4rS_{MNP}\).

Ngoài ra theo công thức Hê-rông ta có:

\(S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\).Do đó:

IA . IB . IC. 4rSMNP = \(\frac{8r^3.S^2_{ABC}}{p}=8r^4S_{ABC}\)(vì SABC = pr), suy ra đpcm

  P/s: Chỗ nào không hiểu thì bạn chỉ việc vẽ hình ra và quan sát hình là được :))

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.a) Vì sao AD là đường kính của đường tròn(O)b) Tính góc ∠ACDc) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:a) Chu vi tam giác...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)

b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)

Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:

a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R

Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.

a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).

b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.

1
2 tháng 9 2020

Bài 1 :                                                      Bài giải

Hình tự vẽ //                                       

a) Ta có DOC = cung DC

Vì DOC là góc ở tâm và DAC là góc chắn cung DC

=>DOC = 2 . AOC (1)

mà tam giác AOC cân =>AOC=180-2/AOC (2)

Từ (1) ; (2) ta được DOC + AOC = 180

b) Góc ACD là góc nội tiếp chắn nữa đường tròn

=>ACD=90 độ

c) c) HC=1/2*BC=12

=>AH=căn(20^2-12^2)=16

Ta có Sin(BAO)=12/20=>BAO=36.86989765

=>AOB=180-36.86989765*2=106.2602047

Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)

<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2

=>OA=12.5

5 tháng 6 2021

Gọi F là trung điểm MN.\(C_1\) là tiếp điểm của (P) và (Q).\(FC_1\) cắt AB,AC tại D,E.

\(\Rightarrow\left(P\right),\left(Q\right)\) lần lượt là đường tròn nội tiếp của \(\Delta DBF,\Delta EFC\)

Dễ dàng chứng minh được PQNM là hình chữ nhật (có 3 góc vuông) 

\(\Rightarrow FC_1\bot BC\)

Xét \(\Delta DFB\) và \(\Delta CFE:\) Ta có: \(\left\{{}\begin{matrix}\angle EFC=\angle BFD=90\\\angle ECF=\angle BDF=90-\angle ABC\end{matrix}\right.\)

\(\Rightarrow\Delta DFB\sim\Delta CFE\left(g-g\right)\)

mà bán kính đường tròn nội tiếp \(\Delta DFB,\Delta CFE\) bằng nhau

\(\Rightarrow\Delta DFB=\Delta CFE\Rightarrow DF=FC\Rightarrow\Delta DFC\) vuông cân tại F

Ta có: \(\angle DAC=\angle DFC=90\Rightarrow DAFC\) nội tiếp

\(\Rightarrow\angle FAC=\angle FDC=45\Rightarrow\) AF là phân giác \(\angle BAC\Rightarrow\) đpcmundefined