Cho tam giác ABC vuông tại B, đường cao BH, BA=15 cm, BC=20 cm
a) Chứng minh tam giác CHB đồng dạng vs tam giác CBA
b) Chứng minh \(AB^2=AH.AC\)
c) Tính AC, BH
d) Kẻ HK vuông góc AB, HI vuông góc BC. Chứng minh tam giác BKI đồng dang tam giác BCA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a) Xét ΔABC vuông tại B và ΔAHB vuông tại H có
\(\widehat{A}\) chung
Do đó: ΔABC\(\sim\)ΔAHB(g-g)
Suy ra: \(\dfrac{AB}{AH}=\dfrac{AC}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=AH\cdot AC\)
b) Ta có: \(AB^2=AH\cdot AC\)
\(\Leftrightarrow AH\cdot12=6^2=36\)
hay AH=3(cm)
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: BA/BH=BC/BA
=>BA^2=BH*BC
a) xét tam giác ABH và tam giác CBA
có góc B chung
góc AGB= góc BAC=90
=>tam giác ABH đồng dạng tam giác CBA
=>\(\dfrac{AB}{CB}=\dfrac{AH}{CA}\)
b) áp dụng định lý pytago có
AB2+AC2=BC2
Thay AB=8;AC=6
=>BC=10
Theo câu a)có:\(\dfrac{AB}{CB}=\dfrac{AH}{CA}\)
thay số \(\dfrac{8}{10}=\dfrac{AH}{6}\)
=>AH=4,8
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
a. xét tam giác ABC và AHB có:
góc A chung
góc B= góc H (=90)
suy ra 2 tam giác đồng dạng nên \(\frac{AB}{AH}=\frac{AC}{AB}\Rightarrow AB^2=AH.AC\)
b. Xét tam giác CBH và CAB có:
góc C chung
góc H=góc B (=90)
suy ra 2 tam giác đồng dạng nên \(\frac{BC}{AC}=\frac{HC}{BC}\Rightarrow BC^2=AC.HC\)
c. Áp dụng Pytago cho tam giác ABC => \(AC=\sqrt{AB^2+BC^2}=\sqrt{20^2+15^2}=25\)
theo a suy ra \(AH=\frac{AB^2}{AC}=\frac{400}{25}=16\)