Tính nhanh
2/20+2/30+2/42+2/56+2/72+2/90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em lớp 6 nha
B= 1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42 + 1/56 + 1/72
B= 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 + 1/7*8 + 1/8*9
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
B=1+0-0-0-0-0-0-0-1/9
B=1-1/9
B=8/9
k em nha
\(9-A=1-\frac{1}{2}+1-\frac{5}{6}+1-\frac{11}{12}+1-\frac{19}{20}+...+1-\frac{89}{90}\)
\(\Leftrightarrow9-A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(\Leftrightarrow9-A=\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+...+\frac{10-9}{9\cdot10}\)
\(\Leftrightarrow9-A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(\Leftrightarrow A=9-\frac{9}{10}=\frac{81}{10}\)
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\\ =\left(1+1+1+1+1+1+1+1+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\\ =9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\\ =9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
Các số nghịch đảo:
\(2\rightarrow\frac{1}{2};6\rightarrow\frac{1}{6};12\rightarrow\frac{1}{12};...;90\rightarrow\frac{1}{90}\)
Gọi A là tổng các số nghịch đảo
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\\ =\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\\ =1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\\ =1-\frac{1}{10}=\frac{9}{10}\)
A = (1 -1/2) + (1 - 1/6) + (1 - 1/12) + (1 - 1/20 ) + ...+ (1 - 1/ 90)
= (1+1+1+1+1+1+1+1+1) - ( 1/2 - 1/6 - 1/12 - 1/ 20 - ...- 1/90)\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)\(=9-\left(1-\frac{1}{10}\right)=\frac{81}{10}\)
-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
= -1/2-1/6-1/12-1/20-1/30-1/42-1/56-1/64-1/72-1/90
= -(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/64+1/72+1/90)
= -(1/1x2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10)
= -(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
= -(1-1/10)
= - 9/10
Đặt biểu thức cần tính là A. Ta có :
A = 9/10 -( 1/90 + 1/72 + ... + 1/2)
= 9/10 - { 1/( 9.10) + 1/(9.8) + ... + 1/( 2.1)}
= 9/10 - ( 1/9 - 1/10 + 1/8 - 1/9 + ...+ 1 - 1/2) ( 1/90 = 1/(9.10) = 1/9 - 1/10)
= 9/10 - ( 1 - 1/10)
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\\ =\left(1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\\ =9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\\ =9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
A=1/2+ 5/6 + 11/12 + 19/20 + 29 30 + 41/42 + 55/56 + 71/72 + 89/90
\(=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{9.10}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(=2.\frac{3}{20}\)
\(=\frac{3}{10}\)
Coi biểu thức đó là A ta có :A=2/4x5+2/5x6+2/6x7+2/7x8+2/8x9+2/9x10
A=(1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)x2
A=(1/4-1/10)x2=3/20x2=3/10