Giúp mình bài hình này với!
Ai đúng, nhanh nhất mình tick cho
Cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H. Chứng minh rằng:
a, Tam giác AEF đồng dạng với tam giác ABC
b, Gọi D là giao của AH và BC, CMR: Tam giác AEF đồng dạng với tam giác DEC. Từ đó suy ra tia EH là tia phân giác của góc FED
a) Xét \(\Delta\)ABE và \(\Delta\)ACF có
\(\widehat{A}\)là góc chung
\(\widehat{AEB}\)=\(\widehat{AFC}\)(=\(90^O\))
=> \(\Delta\)ABE đồng dạng \(\Delta\)ACF (g.g)
=> \(\frac{AE}{AF}\)=\(\frac{AB}{AC}\)
=> \(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)
Xét \(\Delta\)AEF và \(\Delta\)ABC có
\(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)
Và \(\widehat{A}\)góc chung
Suy ra \(\Delta\)AEF đồng dạng \(\Delta\)ABC( c.g.c) (1)
b) Tương tự, chứng minh \(\Delta\)BEC đồng dạng\(\Delta\)ADC ( G.G)
=> \(\frac{EC}{DC}\)=\(\frac{BC}{AC}\)
=> \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)
Xét \(\Delta\)DEC và \(\Delta\)ABC có
\(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)
\(\widehat{C}\)góc chung
=> \(\Delta\)DEC đồng dạng \(\Delta\)ABC( c.g.c) (2)
Từ (1) (2) => \(\Delta\)DEC đồng dạng \(\Delta\)AEF
=> \(\widehat{DEC}\)=\(\widehat{AEF}\)(3)
Mà \(\widehat{AEB}\)= \(\widehat{CEB}\)= \(90^O\)
=> \(\widehat{AEF}\)+\(\widehat{FEB}\)=\(\widehat{DEC}\)+\(\widehat{BED}\)(4)
Từ (3)(4) => \(\widehat{FEB}\)=\(\widehat{BED}\)
=> EH là phân giác góc FED