K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

Bạn tự vẽ hình nhé!

Vì AC và MC là 2 tt cắt tại C

`=>OC` là phân giác `hat{AOM}`

`=>hat{COM}=hat{COA}=1/2hat{AOM}`

Tương tự do MD và BD là 2 tt cắt tại D

`=>hat{MOD}=1/2hat{BOM}`

`=>hat{COM}+hat{DOM}=1/2(hat{AOM}+hat{BOM})=1/2*180^o=90^o`

Hay `hat{COD}=90^o`

8 tháng 6 2021

Vì CM,CA là tiếp tuyến \(\Rightarrow OC\) là phân giác \(\angle MOA\)

\(\Rightarrow\angle MOA=2\angle MOC\)

Vì DM,DB là tiếp tuyến \(\Rightarrow OD\) là phân giác \(\angle MOB\)

\(\Rightarrow\angle MOB=2\angle MOD\)

\(\Rightarrow\angle COD=\angle MOD+\angle MOC=\dfrac{1}{2}\left(\angle MOB+\angle MOA\right)=\dfrac{1}{2}\angle AOB\)
\(=\dfrac{1}{2}.180=90\)

còn khúc sau chắc bạn tự giải quyết được rồi nhỉ

 

10 tháng 12 2023

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

10 tháng 12 2023

loading...  

Câu 1: 

const fi='dulieu.dat';

fo='thaythe.out';

var f1,f2:text;

a:array[1..100]of string;

n,d,i,vt:integer;

begin

assign(f1,fi); reset(f1);

assign(f2,fo); rewrite(f2);

n:=0;

while not eof(f1) do 

  begin

n:=n+1;

readln(f1,a[n]);

end;

for i:=1 to n do 

  begin

d:=length(a[i]);

vt:=pos('anh',a[i]);

while vt<>0 do 

  begin

delete(a[i],vt,3);

insert('em',a[i],vt);

vt:=pos('anh',a[i]);

end;

end;

for i:=1 to n do 

  writeln(f2,a[i]);

close(f1);

close(f2);

end.

Câu 2: 

uses crt;

const fi='mang.inp';

fo='sapxep.out';

var f1,f2:text;

a:array[1..100]of integer;

i,n,tam,j:integer;

begin

clrscr;

assign(f1,fi); rewrite(f1);

assign(f2,fo); rewrite(f2);

write('Nhap n='); readln(n);

for i:=1 to n do 

  begin

write('A[',i,']='); readln(a[i]);

end;

for i:=1 to n do 

  write(f1,a[i]:4);

for i:=1 to n-1 do 

  for j:=i+1 to n do 

if a[i]>a[j] then

begin

tam:=a[i];

a[i]:=a[j];

a[j]:=tam;

end;

for i:=1 to n do 

  write(f2,a[i]:4);

close(f1);

close(f2);

end.

29 tháng 5 2021

Tham khảo:

29 tháng 5 2021

Gọi số lượng công việc của đội 1 và 2 làm được trong 1h lần lượt là a,b(phần công việc) \(\left(a,b>0\right)\),x là công việc cần làm \(\left(x>0\right)\)

Theo đề,ta có: \(\left\{{}\begin{matrix}\dfrac{18}{5}\left(a+b\right)=x\left(1\right)\\\dfrac{x}{b}-\dfrac{x}{a}=3\left(2\right)\end{matrix}\right.\)

Từ (2) \(\Rightarrow x\left(\dfrac{1}{b}-\dfrac{1}{a}\right)=3\Rightarrow x=\dfrac{3}{\dfrac{1}{b}-\dfrac{1}{a}}=\dfrac{3}{\dfrac{a-b}{ab}}=\dfrac{3ab}{a-b}\)

Thế vào (1),ta được: \(\dfrac{18}{5}\left(a+b\right)=\dfrac{3ab}{a-b}\Leftrightarrow\dfrac{18\left(a+b\right)}{5}=\dfrac{3ab}{a-b}\)

\(\Rightarrow18\left(a+b\right)\left(a-b\right)=15ab\Rightarrow18a^2-15ab-18b^2=0\)

\(\Rightarrow6a^2-5ab-6b^2=0\Rightarrow\left(3a+2b\right)\left(2a-3b\right)=0\)

mà \(a,b>0\Rightarrow2a=3b\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}b\\b=\dfrac{2}{3}a\end{matrix}\right.\)

Thế vào (1),ta được: \(\left\{{}\begin{matrix}\dfrac{18}{5}\left(a+\dfrac{2}{3}a\right)=x\\\dfrac{18}{5}\left(\dfrac{3}{2}b+b\right)=x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a=x\\9b=x\end{matrix}\right.\)

\(\Rightarrow\) đội 1 làm xong công việc trong 6h,đội 2 làm xong trong 9h

5 tháng 1 2022

Bạn có thể hướng dẫn giúp mình ko? Mình cảm ơn nhiều

NV
9 tháng 1 2022

\(A\cap B=\varnothing\Leftrightarrow2m-7\le13m+1\)

\(\Leftrightarrow11m\ge-8\Rightarrow m\ge-\dfrac{8}{11}\)

\(\Rightarrow\) Số nguyên m nhỏ nhất là \(m=0\)

NV
1 tháng 11 2021

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên