Tính:
a) \(\dfrac{5^4.20^4}{25^3.4^5}\)
b) \(\left(\dfrac{-10}{3}\right)^5\) .\(\left(\dfrac{-6}{5}\right)^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2=\left(\dfrac{13}{14}\right)^2=\dfrac{169}{196}\)
b) \(\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2=\left(\dfrac{-1}{12}\right)^2=\dfrac{1}{144}\)
c) \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)
d) \(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{5}\right)^4=\dfrac{-10^5}{3^5}.\dfrac{-6^4}{5^4}=\dfrac{-\left(2.5\right)^5.\left(3.2\right)^4}{3^5.5^4}=\dfrac{-29.5}{3}=-853\dfrac{1}{3}\)
a) \(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2=\left(\dfrac{6}{14}+\dfrac{7}{17}\right)^2=\left(\dfrac{13}{12}\right)^2=\dfrac{13^2}{12^2}=\dfrac{169}{144}\)
b)\(\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2=\left(\dfrac{9}{12}-\dfrac{10}{12}\right)^2=\left(\dfrac{-1}{12}\right)^2=\dfrac{\left(-1\right)^2}{12^2}=\dfrac{1}{144}\)
c)\(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.5^4.2^8}{5^{10}.2^{10}}=\dfrac{5^8.2^8}{5^8.5^2.2^8.2^2}=\dfrac{1}{5^2.2^2}=\dfrac{1}{25.4}=\dfrac{1}{100}\)
d)\(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{5}\right)^4=\dfrac{\left(-10\right)^5.\left(-6\right)^4}{3^5.5^4}=\dfrac{\left(-2\right)^5.5^5.2^4.3^4}{3^4.3.5^4}=\dfrac{\left(-2\right)^5.5.5^42^4}{3.5^4}=\dfrac{\left(-2\right)^5.5.2^4}{3}=\dfrac{-2560}{3}=-853\dfrac{1}{3}\)
A = (\(\dfrac{5}{6}\) - \(\dfrac{4}{5}\)) . 1\(\dfrac{1}{5}\) + \(\dfrac{3}{16}\) : (\(\dfrac{-1}{2}\))3
A = \(\dfrac{1}{30}\) . \(\dfrac{6}{5}\) + \(\dfrac{3}{16}\) : \(\dfrac{-1}{8}\)
A = \(\dfrac{1}{25}\) + \(\dfrac{3}{16}\) . \(\dfrac{-8}{1}\)
A = \(\dfrac{1}{25}\) + \(\dfrac{-3}{2}\)
A = \(\dfrac{-73}{50}\)
B = \(\dfrac{4}{17}\) . (7\(\dfrac{3}{4}\) - 6\(\dfrac{1}{3}\)) + (5\(\dfrac{3}{4}\) - 6.95) : (-1\(\dfrac{3}{5}\))
B = \(\dfrac{4}{17}\) . \(\dfrac{17}{12}\) + (\(\dfrac{23}{4}\) - \(\dfrac{139}{20}\)) : \(\dfrac{-8}{5}\)
B = \(\dfrac{1}{3}\) + \(\dfrac{-6}{5}\) . \(\dfrac{-5}{8}\)
B = \(\dfrac{13}{12}\)
a.\(12,5.\left(-\dfrac{5}{7}\right)+1,5.\left(-\dfrac{5}{7}\right)\)
\(=\left(-\dfrac{5}{7}\right).\left(12,5+1,5\right)\)
\(=-10\)
b,\(\left(-\dfrac{2}{5}-\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{5}+\dfrac{3}{7}\right):\dfrac{4}{5}\)
\(=\left(-\dfrac{2}{5}-\dfrac{3}{7}-\dfrac{1}{5}+\dfrac{3}{7}\right):\dfrac{4}{5}\)
\(=-\dfrac{3}{5}:\dfrac{4}{5}\)
\(=-\dfrac{3}{4}\)
c,\(12.\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\)
\(=12.\dfrac{4}{9}+\dfrac{4}{3}\)
\(=\dfrac{16}{3}+\dfrac{4}{3}\)
\(=\dfrac{20}{3}\)
d,\(1:\left(\dfrac{2}{3}-\dfrac{3}{4}\right)^2\)
\(=\dfrac{1}{1}:\dfrac{1}{144}\)
\(=144\)
e,\(15.\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(=15.\dfrac{4}{9}-\dfrac{7}{3}\)
\(=\dfrac{20}{3}-\dfrac{7}{3}\)
\(=\dfrac{13}{3}\)
a) = ( 12,5 +1,5 ). \(\left(-\dfrac{5}{7}\right)\)
= 14 . \(\left(-\dfrac{5}{7}\right)\)
= -10
b) = (\(-\dfrac{2}{5}+-\dfrac{1}{5}\)) + \(\left(\dfrac{3}{7}-\dfrac{3}{7}\right)\): \(\dfrac{4}{5}\)
= \(\left(-\dfrac{3}{5}+0\right)\): \(\dfrac{4}{5}\)
= \(\dfrac{3}{4}\)
c) = \(\left(12.-\dfrac{2}{9}\right)\) + \(\dfrac{4}{3}\)
= \(\dfrac{8}{3}\) + \(\dfrac{4}{3}\)
= \(-\dfrac{4}{3}\)
d) = 1: \(\dfrac{23}{48}\)
=\(\dfrac{48}{23}\)
e) =\(\left(15.-\dfrac{2}{9}\right)-\dfrac{7}{3}\)
= \(\left(-\dfrac{10}{3}\right)-\dfrac{7}{3}\)
=\(-\dfrac{17}{3}\)
f) = 10 485.76
a: \(=\dfrac{3}{4}-\dfrac{5}{6}+\dfrac{3}{2}=\dfrac{9-10+18}{12}=\dfrac{17}{12}\)
b: \(=\left(\dfrac{1}{9}+\dfrac{6}{9}\right)^2-\dfrac{1}{3}=\dfrac{49}{81}-\dfrac{27}{81}=\dfrac{22}{81}\)
c; \(=\dfrac{5}{11}\left(-\dfrac{3}{7}-\dfrac{5}{7}\right)+\dfrac{-8}{7}\cdot\dfrac{6}{11}=\dfrac{-8}{7}\left(\dfrac{5}{11}+\dfrac{6}{11}\right)=-\dfrac{8}{7}\)
d: \(=\dfrac{2^{26}}{2^{15}\cdot2^{12}}=\dfrac{1}{2}\)
a) $\frac{3}{2} \times \frac{5}{8} + \frac{7}{4} = \frac{{15}}{{16}} + \frac{7}{4} = \frac{{15}}{{16}} + \frac{{28}}{{16}} = \frac{{43}}{{16}}$
b) $\frac{8}{5}:\left( {\frac{4}{3} - \frac{5}{6}} \right) = \frac{8}{5}:\left( {\frac{8}{6} - \frac{5}{6}} \right) = \frac{8}{5}:\frac{1}{2} = \frac{8}{5} \times 2 = \frac{{16}}{5}$
c) $\frac{3}{4} \times \frac{1}{5} - \frac{1}{{10}} = \frac{3}{{20}} - \frac{1}{{10}} = \frac{3}{{20}} - \frac{2}{{20}} = \frac{1}{{20}}$
a) \(\dfrac{-4}{6}\)
b) \(\dfrac{1}{3}\)-\(\dfrac{20}{60}\)
= 0
c) \(-20^2\)+(\(-50^3\))
= -400 + (-125000)
=-125400
d) \(\dfrac{-2}{7}\)+\(\dfrac{15}{35}\)
= \(\dfrac{-10}{35}\)+\(\dfrac{15}{35}\)
= \(\dfrac{5}{35}\)=\(\dfrac{1}{7}\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{11}{10}+\dfrac{3}{5}\times\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+5\times\dfrac{5}{8}=\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\left(\dfrac{2}{5}+\dfrac{3}{7}\right)\times\dfrac{25}{29}=\left(\dfrac{14}{35}+\dfrac{15}{35}\right)\times\dfrac{25}{39}=\dfrac{29}{35}\times\dfrac{25}{39}=\dfrac{145}{274}\)
d) \(\dfrac{1}{4}\times\dfrac{5}{12}+\dfrac{5}{12}\times\dfrac{4}{5}=\dfrac{5}{12}\times\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}\times\dfrac{21}{20}=\dfrac{105}{240}=\dfrac{7}{16}\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}x\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\dfrac{29}{35}x\dfrac{25}{29}=\dfrac{5}{7}\)
\(=\dfrac{5}{12}x\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}x\dfrac{21}{20}=\dfrac{7}{16}\)
a) `(5^4 . 20^4)/(25^3 .4^5)`
`=(5^4 . (5.4)^4)/((5^2)^3 .4^5)`
`= (5^4 . 5^4 . 4^4)/(5^6 . 4^5)`
`= (5^2)/4=25/4`
b) `(-10/3)^5 . (-6/5)^4`
`=-10/3 . [(-10/3) . (-6/5)]^4`
`= -10/3 . [ (-5.2 . (-2).3)/(3.5)]^4`
`=-10/3 . 4^4`
`=-2560/3`
A) \(=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)
B)=\(\left(\dfrac{-10}{3}\right).\left(\dfrac{-10}{3}\right)^4.\left(\dfrac{-6}{5}\right)^4\)
=\(\left(\dfrac{-10}{3}\right).\left(\dfrac{-10}{3}.\dfrac{-6}{5}\right)^4\)
=\(\left(\dfrac{-10}{3}\right).\left(\dfrac{60}{15}\right)^4\)
=\(\left(\dfrac{-10}{3}\right).4^4\)
=\(\left(\dfrac{-10}{3}\right).256\)
=\(\dfrac{-2650}{3}\)