A= 3/4 . 8/9 . 15/16 . 24/25 . ... . 399/400
hỏi A bằng bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)
\(M=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{400-1}{400}\)
\(M=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{400}\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{400}\right)\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Do từ 2 đến 20 có \(20-2+1=19\) nên :
\(M=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\)
\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)
\(A>\frac{1}{2}-\frac{1}{21}\)
\(\Rightarrow\)\(M=19-A>19-\frac{1}{2}+\frac{1}{21}=18,5+\frac{1}{21}>8\)
\(\Rightarrow\)\(M>8\) ( đpcm )
Còn câu b) bn xem lại đề đi, nếu đề đúng thì mk sai :v
Chúc bạn học tốt ~
\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}...+\frac{399}{400}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+\left(1-\frac{1}{25}\right)+...+\left(1-\frac{1}{400}\right)\)
\(=\left(1+1+1+....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{20^2}\right)\)
\(=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Đặt \(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{20^2}\)
\(< P=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{20\cdot21}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{20}-\frac{1}{21}\)
\(=\frac{1}{2}-\frac{1}{21}\)
\(\Rightarrow M+N>19-\frac{1}{2}+\frac{1}{21}=\frac{37}{2}+\frac{1}{21}>8\)
b sai đề.chừng nào chữa đề thì làm
a: =6/12*7/14*8/16*9/18=1/2*1/2*1/2*1/2=1/16
b: =4/12*15/3*9/25*24/8
=1/3*3*5*9/25=9/5
A = 3/4 + 8/9 + 15/16 + ... + 399/400
A = 1 - 1/4 + 1 - 1/9 + 1 - 1/16 + ... + 1 - 1/400
A = (1 + 1 + 1 + ... +1) - (1/4 + 1/9 + 1/16 + ... + 1/400)
A = 19 - (1/2.2 + 1/3.3 + 1/4.4 + ... + 1/20.20)
đặt b = 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/20.20
có 1/2.2 < 1/1.2 ; 1/3.3 < 1/2.3 ; ... 1/20.20 < 1/19.20
=> b < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/19.20
=> b < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/19 - 1/20
=> b < 1 - 1/20
=> b < 1
mà A = 19 - b
=> A > 18
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+.....+\frac{20^2-1}{20^2}\)
\(=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{20^2}\right)\)
\(>19-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{19\cdot20}\right)\)
\(=19-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{19}-\frac{1}{20}\right)\)
\(=19-\left(1-\frac{1}{20}\right)\)
\(>19-1=18\)
=(1-1/2)(1+1/2)*...*(1+1/10)(1-1/10)
=1/2*2/3*...*9/10*3/2*4/3*...*11/10
=1/10*11/2
=11/20
a,\(\frac{4}{3}\)x \(\frac{9}{8}\)x \(\frac{16}{15}\)x \(\frac{25}{24}\)
= \(\frac{5}{3}\)
b, \(\frac{4}{3}\)x \(\frac{9}{8}\)x \(\frac{16}{15}\)x \(\frac{25}{24}\)x \(\frac{36}{35}\)x \(\frac{49}{48}\)x \(\frac{64}{63}\)x \(\frac{81}{80}\)
= \(\frac{9}{5}\)
\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{10^2-1}{10^2}.\)
A là tổng của 9 số hạng; mỗi số hạng đều nhỏ hơn 1 nên A<9*1<50.
\(A\approx7.5\)