Cho góc bẹt ABD. Trên cùng một nửa mặt phẳng có bờ chứa AD, vẽ 2 tia BC và BE sao cho góc ABC= 112°, góc DBE= 34°.
a) Tính góc CBD.
b) chứng tỏ BE là tia phân giác của góc CBD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Sửa đề 1 tí nhé
Ta có: CBD = 180 độ - ABC
CBD = 180 độ - 112 độ
CBD = 68 độ
Ta có: ABE = 180 độ - EBD = 146 độ
=> Góc ABC < góc ABE
Theo đề ra: Tia BC và tia BE thuộc nửa mặt phẳng bờ AD
=> BC nằm giữa hai tia BA và BE
Mà: BE nằm giữa hai tia BA và BD
=> BE nằm giữa hia tia OC và BD
Ta có: Góc DBE = 34 độ
Góc CBD = 68 độ
=> Góc DBE = 1/2 góc DBC
Vậy BE là tia phân giác của góc DBC
a) Ta có: \(\widehat{ABC}+\widehat{CBD}=180^0\)( kề bù )
\(112^0+\widehat{CBD}=180^0\)
\(\widehat{CBD}=68^0\)
b) Ta có: \(\widehat{CBE}+\widehat{EBD}=\widehat{CBD}\)
\(\widehat{CBE}+34^0=68^0\)
\(\widehat{CBE}=34^0\)
Vậy BE là tia phân giác của góc CBD
Bài làm
~ Đề bài phải làm godc DBE = 34* mới hợp lí. ~
b) Ta có: \(\widehat{ABC}+\widehat{CBD}=180^0\) ( hai góc kề bù )
hay \(112^0+\widehat{CBD}=180^0\)
=> \(\widehat{CBD}=180^0-112^0=68^0\)
Vậy \(\widehat{CBD}=68^0\)
~ Ngoài tính theo góc kề bù, bạn có thể cộng góc AB với CBE + EBD = 180o Vì góc ABD là góc bẹt. Rồi lấy 180o - 112o - 34o thì sẽ ra góc CBE, rồi lấy góc CBE + EBD thì sẽ ra, nhưng góc kề bù sẽ tính nhanh hơn đó. ~
b) Ta có \(\widehat{CBE}+\widehat{EBD}=68^0\)
hay \(\widehat{CBE}=180^0-\widehat{EBD}\)
=> \(\widehat{CBE}=68^0-34^0\)
=> \(\widehat{CBE}=34^0\)
Mà \(\widehat{EBD}=34^0\)
=> \(\widehat{CBE}=\widehat{EBD}=34^0\)
Do đó: BE là tia phân giác của \(\widehat{CBD}\)
# Chúc bạn học tốt #
a) Vì xOy là góc bẹt nên xOy = 180 độ
mà xOz < xOy
=> Oz nằm giữa
=> xOz + zOy = xOy
=> 70 độ + zOy=180 độ
=> zOy = 110 độ
b) Vì xOt > xOz = ( 70 độ > 140 độ )
=> Oz nằm trong hai tia Ot và Ox
=> 70 độ + zOt = 140 độ =>70 độ
Oz nằm giữa và xOz = zOt ( 70 độ = 70 độ )
=> Oz là tia phân giác của xOt
c) Om là tia đối của Oz nên zOm = 180 độ
=> zOy + yOm = zOm
=> 110 độ + yOm = 180 độ
=> yOm = 180 -110 = 70 độ