K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

a)    \(2x^3-4x^2+2x=0\)

\(\Leftrightarrow\)\(2x\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\)\(2x\left(x-1\right)^2=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy....

28 tháng 3 2018

a)

\(2x^3-4x^2+2x=0\)

\(\Leftrightarrow2x\times\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2x\times\left(x-1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy phương trình có tập nghiệm  \(S=\left\{0;1\right\}\)

19 tháng 9 2019

\(a,4x^2+9y^2+4x-24y+17=0\)

\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)

\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)

\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)

9 tháng 11 2022

loading...  giúp mình với chiều thì rồi

a) \(\left(2x^2+x-6\right)^2+3\left(2x^2+x-3\right)-9=0\)

\(\Leftrightarrow\left(2x^2+x-6\right)^2+3\left(2x^2+x-6\right)=0\)

\(\Leftrightarrow\left(2x^2+x-6\right)\left(2x^2+x-6+3\right)=0\)

\(\Leftrightarrow\left(2x^2+x-6\right)\left(2x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x-3=0\end{cases}}\)hoặc \(\orbr{\begin{cases}x-1=0\\2x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{3}{2}\end{cases}}\)hoặc \(\orbr{\begin{cases}x=1\\x-\frac{3}{2}\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{-2;\frac{3}{2};1;-\frac{3}{2}\right\}\)

b) \(2y^4-9y^3+14y^2-9y+2=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-1\right)^2\left(2y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-2=0\\\left(y-1\right)^2=0\end{cases}}\)hoặc \(2y-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2\\y-1=0\end{cases}}\)hoặc \(2y=1\)

\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\)hoặc \(y=\frac{1}{2}\)

Vậy tập nghiệm của PT là \(S=\left\{2;1;\frac{1}{2}\right\}\)

24 tháng 2 2021

a) Đặt 2x2 + x - 6 = a

pt <=> a2 + 3( a + 3 ) - 9 = 0

<=> a2 + 3a + 9 - 9 = 0

<=> a( a + 3 ) = 0

<=> ( 2x2 + x - 6 )( 2x2 + x - 6 + 3 ) = 0

<=> ( 2x2 + x - 6 )( 2x2 + x - 3 ) = 0

<=> ( 2x2 + 4x - 3x - 6 )( 2x2 - 2x + 3x - 3 ) = 0

<=> [ 2x( x + 2 ) - 3( x + 2 ) ][ 2x( x - 1 ) + 3( x - 1 ) ] = 0

<=> ( x + 2 )( 2x - 3 )( x - 1 )( 2x + 3 ) = 0

<=> x = -2 hoặc x = 1 hoặc x = ±3/2

Vậy S = { -2 ; 1 ; ±3/2 }

b) 2y4 - 9y3 + 14y2 - 9y + 2 = 0

<=> 2y4 - 4y3 - 5y3 + 10y2 + 4y2 - 8y - y + 2 = 0

<=> 2y3( y - 2 ) - 5y2( y - 2 ) + 4y( y - 2 ) - ( y - 2 ) = 0

<=> ( y - 2 )( 2y3 - 5y2 + 4y - 1 ) = 0

<=> ( y - 2 )( 2y3 - 2y2 - 3y2 + 3y + y - 1 ) = 0

<=> ( y - 2 )[ 2y2( y - 1 ) - 3y( y - 1 ) + ( y - 1 ) ] = 0

<=> ( y - 2 )( y - 1 )( 2y2 - 3y + 1 ) = 0

<=> ( y - 2 )( y - 1 )( 2y2 - 2y - y + 1 ) = 0

<=> ( y - 2 )( y - 1 )[ 2y( y - 1 ) - ( y - 1 ) ] = 0

<=> ( y - 2 )( y - 1 )2( 2y - 1 ) = 0

<=> y = 2 hoặc y = 1 hoặc y = 1/2

Vậy S = { 2 ; 1 ; 1/2 }

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

29 tháng 2 2020

a) 3x - 2 = 2x-3

<=> 3x-2 -2x +3 = 0

<=> x +1 = 0

<=> x = -1

c) 3 - 4y+24+6y=y+27+3y

<=> 3 - 4y+24+6y - y - 27 - 3y = 0

<=> -2y =0

<=> y = 0

b,7-2x = 22 - 3x

<=> 7-2x -22 +3x = 0

<=> -15 +x = 0

<=> x = 15

d) x-12+4x = 25+2x-1

<=> x-12+4x -25-2x+1=0

<=> 3x -36 = 0

<=> 3x = 36

<=> x = 12

còn câu e bạn tự làm nha

\(a,3x-2=2x-3\)

\(3x-2x=-3+2\)

\(x=-1\)

Vậy pt cs nghiệm là  { -1 }

\(b,7-2x=22-3x\)

\(-2x+3x=22-7\)

\(x=15\)

Vậy pt cs nghiệm là { 15 }

bn lm nốt nha ... 

24 tháng 3 2017

a/ 4x + 20 = 0

⇔4x = -20

⇔x = -5

Vậy phương trình có tập nghiệm S = {-5}

b/ 2x – 3 = 3(x – 1) + x + 2

⇔ 2x-3 = 3x -3+x+2

⇔2x – 3x = -3+2+3

⇔-2x = 2

⇔x = -1

Vậy phương trình có tập nghiệm S = {-1}
 

24 tháng 3 2017

câu tiếp theo

a/ (3x – 2)(4x + 5) = 0

3x – 2 = 0 hoặc 4x + 5 = 0

  • 3x – 2 = 0 => x = 3/2
  • 4x + 5 = 0 => x = – 5/4

Vậy phương trình có tập nghiệm S= {-5/4,3/2}

b/ 2x(x – 3) – 5(x – 3) = 0

=> (x – 3)(2x -5) = 0

=> x – 3 = 0 hoặc 2x – 5 = 0

* x – 3 = 0 => x = 3

* 2x – 5 = 0 => x = 5/2

Vậy phương trình có tập nghiệm S = {0, 5/2}


 

10 tháng 10 2019

      a)     x+ y- 2x + 4y + 5 = 0

\(\Leftrightarrow\)( x- 2x + 1 ) + ( y2 + 4y + 4 ) = 0

\(\Leftrightarrow\)( x - 1 )2 + ( y + 2 )= 0

\(\Rightarrow\)x - 1 = 0 và y + 2 = 0

\(\Rightarrow\)x = 1 và y = - 2

Vậy : x = 1 và y = - 2

b) 4x+ 9y2 - 4x - 6y + 2 = 0

\(\Leftrightarrow\)[ ( 2x )2 - 4x + 1 ] + [ ( 3y )- 6y + 1 ] = 0

\(\Leftrightarrow\)( 2x - 1 )+ ( 3y - 1 )2 = 0

\(\Rightarrow\)2x - 1 = 0 và 3y - 1 = 0

\(\Rightarrow\)x = 1 / 2 và y = 1 / 3

Vậy : x = 1 / 2 và y = 1 / 3

11 tháng 10 2019

a) \(x^2+y^2-2x+4y+5=0\)

    \(x^2+y^2-2x+4y+1+4=0\)

    \(\left(x^2-2x+1\right)\left(y^2+4y+4\right)=0\)

     \(\left(x-1\right)^2\left(y+2\right)^2=0\)

     \(\Rightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)

b) \(4x^2+9y^2-4x-6y+2=0\)

    \(\left(4x^2-4x+1\right)\left(9y^2-6y+1\right)=0\)

    \(\left(2x-1\right)^2\left(3y-1\right)^2=0\)

    \(\Rightarrow\orbr{\begin{cases}2x-1=0\\3y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{3}\end{cases}}}\)

    

NV
9 tháng 4 2021

1.

Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi

Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)

\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:

\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)

\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)

9 tháng 4 2021

Câu 2 đâu pa