\(So sánh : A =\frac{10^{2018}+1}{10^{2018}-1} và B = \frac{10^{2018}}{10^{2018}-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(+)A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(10A=\frac{10^{2017}+20180}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\left(1\right)\)
\(+)10B=\frac{10^{2018}+20180}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\left(2\right)\)
Từ (1),(2)=> \(\frac{18162}{10^{2017}+2018} >\frac{18162}{10^{2018}+2018}\)
=> 10A>10B
=>A>B
ta có :
\(A=\frac{10^{2019}+1}{10^{2018}+1}=\frac{10^{2018}.10+1}{10^{2018}+1}=\frac{10}{10^{2018}+1}\)
\(B=\frac{10^{2018}+1}{10^{2017}+1}=\frac{10^{2017}.10+1}{10^{2017}+1}=\frac{10}{10^{2017}+1}\)
Do \(10^{2017}+1< 10^{2018}+1\Rightarrow\frac{10}{10^{2017}+1}>\frac{10}{10^{2018}+1}\)
\(\Rightarrow A< B\)
\(M=\frac{10^{2018}+2}{10^{2018}+1}=\frac{10^{2018}+1+1}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{1}{10^{2018}+1}=1+\frac{1}{10^{2018}+1}\)
\(N=\frac{10^{2018}}{10^{2018}-3}=\frac{10^{2018}-3+3}{10^{2018}-3}=\frac{10^{2018}-3}{10^{2018}-3}+\frac{3}{10^{2018}-3}=1+\frac{3}{10^{2018}-3}\)
Ta có: \(\frac{1}{10^{2018}+1}< \frac{1}{10^{2018}-3}< \frac{3}{10^{2018}-3}\)
\(\Rightarrow N>M\)
\(M=\frac{10^{2018}+2}{10^{2018}+1}=\frac{10^{2018}+1+1}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{1}{10^{2018}+1}=1+\frac{1}{10^{2018}+1}.\)
\(N=\frac{10^{2018}}{10^{2018}-3}=\frac{10^{2018}-3+3}{10^{2018}-3}=\frac{10^{2018}-3}{10^{2018}-3}+\frac{3}{10^{2018}-3}=1+\frac{3}{10^{2018}-3}\)
Ta có\(\frac{1}{10^{2018}+1}< \frac{1}{10^{2018}-3}< \frac{3}{10^{2018}-3}\)
\(\Leftrightarrow N>M\)
Ta có:
10A=\(\frac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)
10B=\(\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1}{10^{2019}+1}+\frac{9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)
do 1=1 và \(\frac{9}{10^{2018}+1}>\frac{9}{10^{2019}+1}\)
\(\Rightarrow\)A>B
Vậy A>B
chúc bạn học tốt!
\(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018+18162}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018}{10^{2017}+2018}+\frac{18162}{10^{2017}+2018}\)
\(=1+\frac{18162}{10^{2017}+2018}\)
\(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow10B=\frac{10^{2018}+20180}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018+18162}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018}{10^{2018}+2018}+\frac{18162}{10^{2018}+2018}\)
\(=1+\frac{18162}{10^{2018}+2018}\)
Ta thấy: \(1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2018}+2018}\)
=> 10A > 10B
=> A > B
a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)< \(\frac{9^{19}+1+8}{9^{20}+1+8}\)= \(\frac{9^{19}+9}{9^{20}+9}\)= \(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)= \(\frac{9^{18}+1}{9^{19}+1}\)= A
Vậy A > B
b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)> \(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)= \(\frac{10^{2018}-10}{10^{2019}-10}\)= \(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)= \(\frac{10^{2017}-1}{10^{2018}-1}\)= A
Vậy A < B.
NHỚ K CHO MK VỚI NHÉ !!!!!!!!
ta có quy đồng B ta dc(-9x10^2018-19x10^2019)/(10^2019x10^2018)
tương tự với C ta có (-19x10^2018-9x10^2019)/(10^2019x10^2018)
sau khi quy đồng ta thấy mẫu của B và C giống nhau từ đó ta so sánh tử số của B và C
tử số của B=10^2018x(-9-19x10)=10^2018x-199
C=10^2018x(-19-9x10)=10^2018x-109
ta thấy -199<-109=>B<C (dpcm)
A = 6cs + 7cs - 1 = 7cs
B = 12cs - 2 = 12 cs
==>A>B