cho tam giác ABC vuông tại A, đường cao AH, lấy D trên cạnh AB. vẽ BE vuông góc CD tại E. vẽ đường thẳng qua D song song với AH cắt BC tại F. chứng minh CA,BE,DF đồng quy
MÌNH ĐANG CẦN GẤP NÊN GIÚP MÌNH NHA !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:Xet ΔHBA và ΔABC có
góc HBA chung
góc BHA=góc BAC
=>ΔHBA đồng dạng với ΔABC
b: góc CAB+góc CKB=90+90=180 độ
=>CABK nội tiếp
=>góc AKB=góc ACB
a: Xét ΔABF có
AE vừa là đường cao, vừa là phân giác
nen ΔABF cân tại A
b: Xét tứ giác HFKD có
HF//DK
HF=DK
Do đó: HFKD là hình bình hành
=>DH//KF và DH=KF
c: Xét ΔABC co AB<AC
nên góc C<góc ABC
Gọi G là giao điểm của BE và AC (*)
Ta có: tam giác ABC vuông tại A (gt) =>AC vuông góc với AB tại A
=> GC vuông góc với AB tại A
=> GC là đường cao thứ nhất của tam giác GBC (1)
Ta có: BE vuông góc với CD tại E => BE vuông góc EC tại E
=> CE là đường cao thứ 2 của tam giác GBC (2)
Ta có BA cắt CE tại D (3)
Từ (1), (2), (3) ta suy ra D là trực tâm của tam giác GBC
=> GD thuộc đường cao thứ 3 của tam giác GBC.
=> GD vuông góc với BC
Ta có AH vuông góc với BC tại H (vì AH là đường cao của tam giác ABC) ; DF song song với AH.
=> DF vuông góc với BC tại F
=> G,D,F thẳng hàng
=> DF đi qua G (**)
Từ (*), (**) ta suy ra: CA, BE, DF đồng quy tại G (đpcm)