K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề 

a: góc CDM=góc CEM=90 độ

=>CDEM nội tiếp

b: Xet ΔMEA vuông tại E và ΔMDB vuông tại D có

góc EMA chung

=>ΔMEA đồng dạng với ΔMDB

=>ME/MD=MA/MB

=>ME*MB=MA*MD

20 tháng 3 2023

a. góc CDM=góc CEM=90 độ

=>CDEM nội tiếp

b. Xet ΔMEA vuông tại E và ΔMDB vuông tại D có

góc EMA chung

=>ΔMEA đồng dạng với ΔMDB

=>ME/MD=MA/MB

=>ME*MB=MA*MD

a: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

=>AM/AC=AN/AB

=>góc AMN=góc ACB

=>góc NMB+góc NCB=180 độ

=>NMBC nội tiếp

b: kẻ đường kính AL

góc ACL=90 độ

AC*AN=AH^2

ΔAIN đồng dạng với ΔACE

=>AI/AC=AN/AE

=>AI*AE=AH^2

góc ADE=90 độ

=>ΔADE vuông tại D

=>AI*AE=AD^2=AH^2

=>AD=AH

a: ΔOBC cân tại O

mà OM là trung tuyến

nên OM vuông góc BC

ΔOAC cân tại O

mà ON là trung tuyến

nên ON vuông góc AC

Vì góc OMC+góc ONC=180 độ

nên OMCN nội tiếp

10 tháng 6 2019

Em không vẽ được hình, xin thông cảm

a, Ta có góc EAN=  cungEN=cung EC+ cung EN

Mà cung EC= cung EB(E là điểm chính giữa cung BC)

=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)

=> tam giác AEN đồng dạng tam giác FED

Vậy tam giác AEN đồng dạng tam giác FED

b,Ta có EC=EB=EM

Tam giác EMC cân tại E => EMC=ECM

 MÀ EMC+AME=180, ECM+ABE=180

=> AME = ABE

=> tam giác ABE= tam giác AME

=> AB=AM => tam giác ABM cân tại A

Mà AE là phân giác => AE vuông góc BM

CMTT => AC vuông góc EN

MÀ AC giao BM tại M

=> M là trực tâm tam giác AEN

Vậy M là trực tâm tam giác AEN

c,  Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH

Vì M là trực tâm của tam giác AEN

=> \(EN\perp AN\)

Mà \(OI\perp AN\)(vì I là trung điểm của AC)

=> \(EN//OI\)

MÀ O là trung điểm của EH

=> I là trung điểm của MH (đường trung bình trong tam giác )

=> tứ giác AMNH là hình bình hành 

=> AH=MN

Mà MN=NC

=> AH=NC

=> cung AH= cung NC

=> cung AH + cung KC= cung KN

Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )

NBK là góc nội tiếp chắn cung KN

=> gócKMC=gócKBN

Hay gócKMC=gócKBM

=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)

Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK

10 tháng 6 2019

Anh Khang nè,e cung cấp hình nha:3

3 tháng 6 2021

mọi người giúp mình nha

cảm ơn nhiều ạ ^^

3 tháng 6 2021

a. xét MEFC có:

∠MEC=90 (ME⊥BC)

∠MFC=90 (MF⊥AC)

⇒∠MEC=∠MFC=90

⇒tứ giác MEFC nội tiếp

xét tứ giác DBEM có

∠BDM+∠BEM=180

⇒ tứ giác DBEM nội tiếp⇒∠DBM=∠DEM

29 tháng 5 2021

A B C H M N

a, Vì HM là đường cao => \(HM\perp AB\)=> ^HMA = 900

Vì HN là đường cao => \(HN\perp AC\)=> ^HNA = 900

Xét tứ giác AMHN có : 

^HMA + ^HNA = 900

mà ^HMA ; ^HNA đối nhau 

Vậy tứ giác AMHN nội tiếp

29 tháng 5 2021

b, Xét tam giác ABH vuông tại H, đường cao HM ta có : 

\(AH^2=AM.AB\)(1)

Xét tam giác ACH vuông tại H, đường cao HN ta có : 

\(AH^2=AN.AC\)(2) 

từ (1) ; (2) suy ra : \(AM.AB=AN.AC\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Xét tam giác AMN và tam giác ACB ta có : 

^A chung 

\(\frac{AM}{AC}=\frac{AN}{AB}\)( cmt )

Vậy tam giác AMN ~ tam giác ACB ( c.g.c )