Cho x,y dương thỏa mãn x+y=1 , tìm giá trị nhỏ nhất của \(P=\frac{a^2}{x}+\frac{b^2}{y}\)với a,b là các hằng số dương
giúp mình vs mọi người oi sáng mai mình nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{25}{2}\)
Dấu "=" xảy ra tại x=y=1/2
http://diendantoanhoc.net/topic/156111-t%C3%ADnh-gi%C3%A1-tr%E1%BB%8B-l%E1%BB%9Bn-nh%E1%BA%A5t-c%E1%BB%A7a-m-frac14x3yz-frac1x4y3z-frac13xy4z/
=> \(\frac{ay+bx}{xy}=\frac{bz+cy}{yz}=\frac{cx+az}{zc}\) <=> \(\frac{a}{x}+\frac{b}{y}=\frac{b}{y}+\frac{c}{z}=\frac{c}{z}+\frac{a}{c}\)
<=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)=> \(x=ak\) ; \(y=bk\) ; \(z=ck\) (2)
Gọi giả thiết là (1) Thay 2 vào 1 ta đc : \(k=\frac{1}{2}\)
=> Kết hợp k=1/2 với 2 ta được: a=x/2 ; b=y/2 và c=z/2
bạn lầu trên ơi, a/x=b/y=c/x=k thì x=a/k chứ bạn đâu phải x=ak đâu.
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)
\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
chắc là 87,556
duyệt nhanh diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii maaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
là 87,556 đó
duyệt diiiiiiiiiiiiiiiiiiiiii maaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Theo bđt cô si ta có : \(x+y\ge2\sqrt{xy}\) <=> \(1\ge2\sqrt{xy}\)
=> \(\sqrt{xy}\le\frac{1}{2}\) <=> \(\sqrt{\frac{1}{xy}}\ge2\)
Theo bđt cô si : \(P=\frac{a^2}{x}+\frac{b^2}{y}\ge2\sqrt{\frac{a^2b^2}{xy}}=2ab\sqrt{\frac{1}{xy}}=2ab.2=4ab\)
Vậy giá trị nhỏ nhất của P=4ab khi x=y=1/2