tìm nghiệm của đa thức
\(g\left(x\right)=4x^2+6x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam thức bậc hai \(f\left( x \right) = 2{x^2} - 5x + 2\) có \(\Delta = {\left( { - 5} \right)^2} - 4.2.2 = 9\)
\(\Delta > 0\), do đó \(f\left( x \right)\) có hai nghiệm phân biệt là
\({x_1} = \frac{{5 + \sqrt 9 }}{4} = 2\) và \({x_1} = \frac{{5 - \sqrt 9 }}{4} = \frac{1}{2}\)
b) Tam thức bậc hai \(g\left( x \right) = - {x^2} + 6x - 9\) có \(\Delta = {6^2} - 4.\left( { - 1} \right).\left( { - 9} \right) = 0\)
\(\Delta = 0\), do đó \(g\left( x \right)\)có nghiệm kép \({x_1} = {x_2} = \frac{{ - 6}}{{2.\left( { - 1} \right)}} = 3\)
c) Tam thức bậc hai \(h\left( x \right) = 4{x^2} - 4x + 9\) có \(\Delta = {\left( { - 4} \right)^2} - 4.4.9 = - 128\)
\(\Delta < 0\), do đó \(h\left( x \right)\) vô nghiệm
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\\ f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\\ \Rightarrow2f\left(x\right)=6x^4-3x^2-5+4x^4-6x^3+7x^2+8x-9\\ 2f\left(x\right)=10x^4-6x^3+4x^2+8x-14\\ 2f\left(x\right)=2\left(5x^4-3x^3+2x^2+4x-7\right)\\ \Rightarrow f\left(x\right)=5x^4-3x^3+2x^2+8x-14\)
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\\ \Rightarrow g\left(x\right)=6x^4-3x^2-5-f\left(x\right)\\ g\left(x\right)=6x^4-3x^2-5-5x^4+3x^3-2x^2-8x+14\\ g\left(x\right)=x^4+3x^3-5x^2-8x+9\)
b)\(B\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(B\left(x\right)=x^3+4x^3+3x-6x-4-x^2-x^3-x^2+3x+8\)
\(B\left(x\right)=4x^3-2x^2+4\)
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4
\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)
=> x = 1 và x = 3 là nghiệm của đa thức f(x)
Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
=> nghiệm của đa thức g(x) là x = { 1; 3 }
Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)
\(\Rightarrow-a+b=2\)(1)
Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)
\(\Rightarrow3a-b=8\)(2)
Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10
=> 2a = 10 => a = 5
=> - 5 + b = 2 => b = 7
Vậy a = 5 ; b = 7
(x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
Vậy nghiệm của f(x) là 1 và 3
Nghiệm của g(x) cũng là 1 và 3
Với x=1 ta có g(x)=1+a+b-3=0
=>a+b-2=0
a+b=2
Với x=3 ta có g(x)=27-9a+3b-3=0
=>24-9a+3b=0
=>8-3a+b=0
=>3a-b=8
a=\(\frac{8+b}{3}\)
Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)
1) \(6x+18=0\)
\(6x=0-18\)
\(6x=-18\)
\(x=\left(-18\right):6\)\(=-3\)
Vậy nghiệm của \(M\left(x\right)\) là \(x=-3\)
2) Thay \(x=2\) vào biểu thức \(N\left(x\right)\)
\(a.2+4=0\)
\(a.2=0-4=-4\)
\(a=\left(-4\right):2=-2\)
Ta có :
\(4x^2+6x=0\)
\(\Leftrightarrow\)\(2x\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{-3}{2}\end{cases}}\)
Vậy nghiệm của đa thức \(g\left(x\right)=4x^2+6x\) là \(x=0\) hoặc \(x=\frac{-3}{2}\)
Chúc bạn học tốt ~
\(4x^2+6x=0\)
\(\Leftrightarrow2x\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{2}\end{cases}}\)
bn hc tốt nhé