K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

\(-2n+9\) là số nguyên tố

\(\Rightarrow\)\(-2n+9>0\)

\(\Rightarrow\)\(2n< 9\)

\(\Rightarrow\)\(n< 4,5\)

do  \(n\in N\) \(\Rightarrow\)\(n=\left\{1,2,3,4\right\}\)

Với  \(n=1\)\(\Rightarrow\)\(2n+1=3\) ko phải số chính phương   (loại)

Với  \(n=2\)\(\Rightarrow\)\(2n+1=5\)ko phải số chính phương    (loại) 

Với  \(n=3\)\(\Rightarrow\)\(3n+1=10\)ko phải số chính phương    (loại) 

Với  \(n=4\) \(\Rightarrow\)\(3n+1=13\)ko phải số chính phương    (loại) 

Vậy ko tìm đc  \(x\in N\)thỏa mãn:  2n+1;  3n+1  là số chính phương  và   -2n+9   là số nguyên tố

11 tháng 4 2018

bài khó à nha

ko dễ

17 tháng 1 2023

Ta có :

 \(\left\{{}\begin{matrix}3n+4⋮2n+1\\2n+1⋮2n+1\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}2\left(3n+4\right)⋮2n+1\\3\left(2n+1\right)⋮2n+1\end{matrix}\right.\\ \rightarrow2\left(3n+4\right)-3\left(2n+1\right)⋮2n+1\\ \rightarrow5⋮2n+1\\ \rightarrow\left\{{}\begin{matrix}2n+1\inƯ\left(5\right)\\2n+1\in N\end{matrix}\right.\\ \rightarrow2n+1\in\left\{1;5\right\}\)

Vậy `n = 0` hoặc `n=2` 

=>6n+8 chia hết cho 2n+1

=>6n+3+5 chia hết cho 2n+1

mà n là số tự nhiên

nên \(2n+1\in\left\{1;5\right\}\)

=>\(n\in\left\{0;2\right\}\)

Gọi d=UCLN(2n-1;9n+4)

\(\Leftrightarrow9\left(2n-1\right)-2\left(9n+4\right)⋮d\)

\(\Leftrightarrow-17⋮d\)

=>d=17

17 tháng 11 2016

Gọi ƯCLN(2n+1,2n+3) là d

Ta có 2n+1 chia hết cho d

         2n+3 chia hết cho d

=>2n+3-2n-1 chia hết cho d

17 tháng 11 2016

thiếu nha

=> 2chia hết cho d

=> d thuộc Ư(2)={1,2}

Vì 2n+1 và 2n+3 là 2 số lẻ liên tiếp nên ước ko thể bằng 2

=> d=1

Vậy ƯCLN(2n+1,2n+3) là 1

16 tháng 7 2018

Ta có: \(\frac{2n^2-n+2}{2n+1}=\frac{2n^2+n-2n-1+3}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}=\frac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}\)

Vì (2n+1) chia hết cho 2n+1 => (2n+1)(n-1) chia hết cho 2n+1

Nên để 2n2 - n + 2 chia hết cho 2n + 1 thì 3 phải chia hết cho 2n+1

=> \(2n+1\inƯ\left(3\right)=\left\{-1;1;3;-3\right\}\)

Nếu 2n + 1 = 1 thì n = 0 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = -1 thì n = -1 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = 3  thì n = 1 (thỏa mãn x thuộc Z)

Nếu 2n + 1 = -3 thì n = -2 (thỏa mãn x thuộc Z)

Vậy để 2n2 - n + 2 chia hết cho 2n + 1 <=> n = {0;-1;-2;1}

16 tháng 7 2018

ta có: 2n2 - n + 2 chia hết cho 2n + 1

=> 2n2 + n - 2n + 2 chia hết cho 2n + 1

n.(2n+1) - ( 2n + 1) + 3 chia hết cho 2n + 1

(2n+1).(n-1) + 3 chia hết cho 2n + 1

mà (2n+1).(n-1) chia hết cho 2n + 1

=> 3 chia hết cho 2n + 1

=>...

1 tháng 11 2017

2n² - n + 2. │ 2n + 1 
2n² + n....... ├------------ 
------------------ I n - 1 
.......-2n + 2 
.......-2n - 1 
_____________ 


Để chia hết thì: 3 phai chia hết cho ( 2n + 1) 

hay (2n + 1) la ước của 3 
Ư(3) = {±1 ; ±3} 
______________________________ 
+) 2n + 1 = 1 <=> n = 0 
+) 2n + 1 = -1 <=> n = -1 
+) 2n + 1 = 3 <=> n = 1 
+) 2n + 1 = -3 <=> n = -2 


Vậy n ∈{0;-2 ; ±1}

1 tháng 11 2017

Ta có: 2n2 – n + 2 : (2n + 1) 

2015-10-01_000139 

Ta có: n ∈ Z và 2n2 – n + 2 chia hết cho 2n +1 thì 2n + 1 là ước của 3. Ước của 3 là ±1; ± 3 

Khi 2n + 1 = 1 ⇔2n = 0 ⇔ n = 0 
Khi 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1 
Khi 2n + 1 = 3 ⇔ 2n = 2 ⇔ n – 1 
Khi 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2 
Vậy, n = 0 hoặc n = – 1 hoặc n = 1 hoặc n = -2.

Ta có : \(2n^2-n+2=n\left(2n+1\right)-\left(2n+1\right)+3⋮2n+1\)

\(\Rightarrow3⋮2n+1\Rightarrow2n+1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)

\(\Rightarrow n\in\left\{-2,-1,0,1\right\}\)

Vậy : \(n\in\left\{-2,-1,0,1\right\}\)