cho tam giác ABC đều, lấy M nằm trong tam giác ABC sao cho góc BMC=150 độ. chứng minh BM^2+MC^2=MA^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c,Vẽ tam giác đều AMD ( D thuộc nửa mặt phẳng bờ AM không chứa C)(Bạn tự vẽ hình nha, dễ như ăn kẹo ấy)
=> DM = AD = AM
Sau đó bạn chứng minh tam giác ADB = tam giác AMC (c.g.c) (cũng dễ thôi)
=> BD = MC (cặp cạnh tương ứng)
Ta có: DM = AM, BD = MC
=> DM : BM : BD = 3:4:5
=> tam giác BDM vuông tại M
=> góc AMB = 90o + 60o = 150o
a) Xét tam giác: AMB và AMC có:
AM chung
BM=CM ( gt)
AB=AC ( tam giác ABC đều)
=> Tam giác AMB =Tam giác AMC (1)
b) Xét tam giác MBC vuông cân tại M
=> \(\widehat{MCB}=\frac{90^o}{2}=45^o\)
Tam giác ABC đều
=> \(\widehat{ACB}=60^o\)
=> \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)
\(\widehat{BCE}=\widehat{MCB}-\widehat{ECM}=45^o-30^o=15^o\)
=> \(\widehat{ACM}=\widehat{BCE}\)(2)
Từ (1) => \(\widehat{MAB}=\widehat{MAC}\) mà \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}=60^o\)
=> \(\widehat{MAB}=\widehat{MAC}=60^o:2=30^o\)
=> \(\widehat{EBC}=\widehat{MAC}\left(=30^o\right)\)(3)
Xét tam giác MCA và tam giác ECB
có: AC=CB ( tam giác ABC đều)
\(\widehat{ACM}=\widehat{BCE}\)( theo (2))
\(\widehat{EBC}=\widehat{MAC}\)( theo (3))
=> Tam giác MCA =Tam giác ECB
=> CM=CE
=> tam giác MEC cân
Câu c) Trên nửa mặt phẳng bờ AM không chứa điểm C dựng tam giác đều AMN
=> \(\widehat{AMN}=60^o\)
và NA=NM=AM
Ta có: \(\widehat{NAB}+\widehat{BAM}=\widehat{NAM}=60^o=\widehat{BAC}=\widehat{BAM}+\widehat{MAC}\)
=> \(\widehat{NAB}=\widehat{MAC}\)(1)
Xét tam giác NAB và tam giác MAC
có: AB=AC ( tam giác ABC đều)
NA=AM ( tam giác AMN đều)
\(\widehat{NAB}=\widehat{MAC}\)( theo (1))
=> Tam giác NAB=MAC
=> NB=MC
Suy ra: MN:BM:NB=MA:MB:MC=3:4:5
=> Tam giác NMB vuông tại M
=> \(\widehat{NMB}=90^o\)
=> \(\widehat{AMB}=\widehat{AMN}+\widehat{NMB}=60^o+90^o=150^o\)
Em tham khảo nhé!
Câu hỏi của channel Anhthư - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link này nhé!
Câu hỏi của channel Anhthư - Toán lớp 7 - Học toán với OnlineMath
Phía nửa mặt phẳng bờ AB không chứa M lấy điểm N sao cho AMN là tam giác đều
Ta có ˆCAB=ˆMANCAB^=MAN^
<=>ˆCAM+ˆMAB=ˆMAB+ˆBANCAM^+MAB^=MAB^+BAN^
<=>ˆCAM=ˆBANCAM^=BAN^ (1)
mà CA =BA và AM =AN (2)
từ (1, 2) =>△CAM=△BAN△CAM=△BAN (c, g, c) (3)
(3) =>CM =BN
ta có MA2=MB2+MC2MA2=MB2+MC2
<=>MN2=MB2+BN2MN2=MB2+BN2
=>t giác MBN vuông tại B
(3) =>ˆACM=ˆABNACM^=ABN^
ˆMBN=ˆABM+ˆABN=90∘MBN^=ABM^+ABN^=90∘
<=>ˆABM+ˆACM=90∘ABM^+ACM^=90∘
<=>(60∘−ˆMBC)+(60∘−ˆMCB)=90∘(60∘−MBC^)+(60∘−MCB^)=90∘
<=>ˆMBC+ˆMCB=30∘MBC^+MCB^=30∘
<=>ˆBMC=180∘−30∘=150∘