K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\Rightarrow\frac{B}{A}=\frac{2013\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2013\)là số nguyên

9 tháng 4 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{97.98}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+..+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow\frac{B}{A}=\frac{\frac{2013}{51}+\frac{2013}{52}+..+\frac{2013}{100}}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}\)

\(=\frac{2013\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}\)

\(=2013\in Z\)

http://olm.vn/hoi-dap/question/126681.html

Bạn tham khảo nhé

12 tháng 7 2015

1/1.2 = 2-1/1.2 = 2-1/1 - 2-1/2 = 1-1/2

TƯƠNG TỰ TA CÓ

A = 1-1/2+1/2-1/3+.....+1/99-1/100

A = 1-1/100

A =99/100

 

24 tháng 3 2015

bài này lớp 6 mik làm rùi

Ta có:

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\) 

\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

Ta có \(\frac{B}{A}=2011\)

25 tháng 3 2015

bạn ơi mình vẫn chưa hiểu lắm

26 tháng 5 2019

đặt A = 1/1*2 +  1/3*4 + 1/5*6 + ... + 1/99*100

= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/99 - 1/100

= (1 + 1/3 + 1/5 + ... + 1/99) - (1/2 + 1/4 + 1/6 + ... + 1/100)

= 1 + 1/2 + 1/3 + ... + 1/100 - 2(1/2 + 1/4 + 1/6 + .... + 1/100)

= 1 + 1/2 + 1/3 + ... + 1/100 - 1 - 1/2 - 13 - ... - 1/50

= 1/51 + 1/52 + 1/53 + ... + 1/100

thay vào ra E = 1

26 tháng 5 2019

Biến đổi mẫu ta được:

\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\Rightarrow E=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=1\)

6 tháng 7 2017

a=\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{100}=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)

=>b/a=2011

6 tháng 7 2017

hình như đề : CMR : \(\frac{b}{a}\)là 1 số nguyên

Ta có :

\(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(a=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(a=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(a=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(b=\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)

\(b=2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)

\(\Rightarrow\frac{b}{a}=\frac{2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}=2011\)là 1 số nguyên ( đpcm )

4 tháng 9 2016

\(\text{Ta có: }B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}\left(1\right)\)

\(\text{Lại có:}A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.....+\frac{1}{100}\left(2\right)\)

\(\text{Từ (1) và (2) ta có A = B }\Rightarrow\frac{A}{B}=1\)

22 tháng 8 2017

\(\frac{a}{b}=\frac{1}{1}\)