Cho a, b là các số nguyên thỏa mãn (a2 + b2) chia hết cho 3.
CMR a và b cùng chia hết cho 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a, b là các số nguyên thỏa mãn (a2 + b2) chia hết cho 3.
CMR a và b cùng chia hết cho 3.
a+5b chia hết 7 thì a và b chia hết cho 7
vậy 10a +b chia hết 7
Ta có :
\(a+5b⋮7\)
\(\Leftrightarrow21a-a+5b-7b⋮7\)
\(\Leftrightarrow20a-2b⋮7\)
\(\Leftrightarrow2\left(10a-b\right)⋮7\)
Mà ( 2 ; 7 ) = 1
=> 10a - b chia hết cho 7
** Sai đề nhé bạn
Ta xét hiệu:
(10a + 50b) - (10a + b) = 10a + 50b - 10a - b
= 49b \(⋮\) 7
\(\Rightarrow\) (10a + 50b) - (10a + b) (1)
Theo bài ra: a + 5b \(⋮\) 7
\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)
Từ (1) và (2), suy ra:
10a + b \(⋮\) 7
Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Ta có :
\(2\left(10a+b\right)+\left(a+5b\right)=20a+2b+a+5b=\left(20a+a\right)+\left(2b+5b\right)\)
\(=21a+7b=7\left(3a+b\right)\)
+) Nếu : \(\left(10a+b\right)⋮7\Rightarrow\left(a+5b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )
+) Nếu : \(\left(a+5b\right)⋮7\Rightarrow2\left(10a+b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )
Mà : 2 và 7 là hai số nguyên tố cùng nhau .
\(\Rightarrow10a+b⋮7\)
Vậy ...
Số có bốn chữ số tổng quát là 1000.a+b.100+c.10+d .
Theo bài a+b+c+d=11 (1)
Cho a+c−b−d/11=k (k thuoc Z) (2)
a;b;c;d \(\le\) 9 => k thuoc {0;1;-1}.
Sở dĩ như vậy vì nếu k=2 => (a+c)-(b+d)=22 vô lí
TH1: k=0 => a+c-(b+d)=11.k. (3)
Tu (1);(3) ta được 2.(a+c)=11.(1+k) => 2.(a+c)=11 => a+c=5,5 vô lí nên loại.
TH2: k=-1 => 2.(a+c)=11.(1+k)=0 => a=c=0 vô lí nên loại.
TH3: k=1 .
lấy (1) trừ đi (3) 2.(b+d)=11.(1-k)
=> b=d=0 => nếu a=2 thi c=9
a=3 => c=8
a=4 => c=7
a=5 => c=6
a=6 => c=5
a=7 => c=4
a=8 => c=3
a=9 => c=2
Vậy các số cần tìm là: 2090;3080;4070;5060;6050;7040;8030;9020
lik e nhe
số có 4 chữ số chia hết cho 11 và tổng các chữ số chia hết cho 11
abcd =11q ; a+b+c+d = 11.p
=> a + c - ( b+d) chia hết cho 11
=>a+b+c+d + a+c -b-d = 2(a + c) chia hết cho 11
=>a + c chia hết cho 11 => a +c =11 =2+9=3+8=4+7 =5+6
=> b+d chia hết cho 11=> b+d =11 = 2+9=3+8 ...............
abcd =( 2299; 2992;9229;9922 ); ( 3388; ......); (.............); (............)
Vậy có 4.4 =16 số như vậy
a) Đúng vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8
b) Sai vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8
c) Sai vì số chia hết cho 5 thì có chữ số tận cùng bằng 0 và 5
d) Đúng
Lời giải:
a+1\vdots b$
$\Rightarrow 2b+5+1\vdots b$
$\Rightarrow 2b+6\vdots b$
$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$
Nếu $b=1$ thì $a=7$. Khi đó $a+7b=14$ không là snt (loại)
Nếu $b=2$ thì $a=9$. Khi đó $a+7b = 23$ là snt (thỏa mãn)
Nếu $b=3$ thì $a=11$. Khi đó $a+7b=32$ không là snt (loại)
Nếu $b=6$ thì $a=17$. Khi đó $a+7b = 59$ là snt (thỏa mãn)
Vậy.........
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n
Ta co : \(a^2+b^2⋮3\)\(\Leftrightarrow\hept{\begin{cases}a^2⋮3\\b^2⋮3\end{cases}}\)
De \(a^2⋮3;b^2⋮3\)thi \(a,b⋮3\)
\(\Rightarrow dpcm\)
Vì a2 là số chính phương =>a2 chia cho 3 dư 0 hoặc 1
Tương tự:b2 là số chính phương =>b2 chia cho 3 dư 0 hoặc 1
=>a2+b2 chia cho 3 dư 0,1 hoặc 2
Mà a2+b2 chia hết cho 3
=>a2+b2 chia cho 3 dư 0
=>a2 và b2 chia hết cho 3
Vì a2 chia hết cho 3,3 là số nguyên tố =>a chia hết cho 3
Tương tự:b2 chia hết cho 3,3 là số nguyên tố =>b chia hết cho 3
Vậy nếu (a2+b2) chia hết cho 3 thì a và b cùng chia hết cho 3
Quỳnh Anh ơi,a2+b2 chia hết cho 3 thì a2 và b2 cũng có thể chia không chia hết cho 3 mà,làm sao suy ra a2 và b2 phải chia hết cho 3 vậy ?