Chứng minh rằng 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
các bạn ai giai nhanh đúng va chi tiet minh se like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 3n+2 và 2n+1 = d
suy ra 3n+2 chia hết cho d ; 2n+1 chia hết cho d
suy ra : (3n+2)-(2n+1) chia hết cho d
suy ra : 2.(3n+2)-3.(2n+1) chia hết cho d
suy ra : 1 chia hết cho d
suy ra d=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau
tick cho mình nhé đúng rồi đấy
Gọi UCLN(2n+5, 3n+7) là d
Ta có 2n+5 chia hết cho d
=> 3(2n+5) chia hết cho d
=> 6n+15 chia hết cho d (1)
Ta có: 3n+7 chia hết cho d
=> 2(3n+7) chia hết cho d
=> 6n+14 chia hết cho d (2)
Từ (1) và (2) suy ra: (6n+15) -( 6n+14) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> UCLN(2n+5, 3n+7) =1
Vậy 2n+5, 3n+7 là hai số nguyên tố cùng nhau
d=(2n+5;3n+7)
=> 3(2n+5) - 2(3n+7) = 6n +15 - 6n -14 =1 chia hết cho d
=> d =1
Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Gọi ƯCLN ( 2n + 5 ; 3n + 7 ) là d. Ta có:
2n + 5 chia hết cho d => 3(2n + 5) = 6n + 15 chia hết cho d.
3n + 7 chia hết cho d => 2(3n + 7) = 6n + 14 chia hết cho d.
=> ( 6n + 15 ) - ( 6n + 14 ) chia hết cho d.
=> 1 chia hết cho d
=> d = 1
Vây 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau=>> ĐPCM
Gọi d là ước chung lớn nhất của 2n+7 và 3n+10
Khi đó \(2n+7⋮d\)và \(3n+10⋮d\)
Từ \(2n+7⋮\Rightarrow3.\left(2n+7\right)⋮d\Rightarrow6n+21⋮d\)
Từ \(3n+10⋮d\Rightarrow2.\left(3n+10\right)⋮d\Rightarrow6n+20⋮d\)
Khi đó : \(\left(6n+21\right)-\left(6n+20\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Do đó \(ƯCLN\left(2n+7;3n+10\right)=1\)
Hay 2n + 7 và 3n + 10 là hai số nguyên tố cùng nhau
Vậy....
1)Gọi 2 số tự nhiên liên tiếp là n và n+1
Đặt ƯCLN(n,n+1)=d
Ta có: n chia hết cho d
n+1 chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n,n+1) =1
=>n và n+1 là 2 số nguyên tố cùng nhau
2)Gọi ƯCLN(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a)
Gọi 2 số tự nhiên liên tiếp là n; n+1
Gọi ƯCLN ( n;n+1) la d
=> n chia hết cho d; n+1 chia hết cho d
=> n+1-n chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN ( n;n+1) =1
=> hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau
b)
Gọi ƯCLN( 2n+5;3n+7) la d
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> 6n+15-(6n+14) chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> ƯCLN( 2n+5;3n+7)=1
=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau
Gọi ƯC(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=Ư(1)=1
=>(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau.
Gọi d là ước chung lớn nhất của 2n+5 và 3n+7
=> 3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=> 6n+14 chia hết cho d
2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=> 6n+15 chia hết cho d
=>(6n+15 - 6n+14) chia hết cho d
= 1 chia hết cho d
hay d=1
Vậy (2n+5;3n+7)=1
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
mk lấy ví dụ n =1; 2n+5 = 2x1+5= 7; 3n+7=3x1+7 = 10;
ƯCLN (7;10) = 1
Gọi ƯCLN ( 2n + 5, 3n + 7 ) là d
\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)\(\Leftrightarrow\)\(1⋮d\)\(\Rightarrow\)\(d=1\)Hoặc có thể nói 2n + 5 và 3n + 7 nguyên tố cùng nhau
Gọi ƯCLN (2n+5;3n+7) là d
=> (2n+5) chia hết cho d => 3(2n+5) chia hết cho d => (6n+15) chia hết cho d
=> (3n+7) chia hết cho d => 2(3n+7) chia hết cho d => (6n+14) chia hết cho d
=> (6n+15) - (6n+14) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
Mà d lớn nhất => d=1
=> 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
CHÚC BẠN HỌC TỐT NHA!