K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

Ta có: 100+101/101+102

= 100/101+102 + 101/101+102

Vì 100/101>100/101+102

     101/102 > 101/101+102

=>100/101+101/102 > 100+101/101+102

20 tháng 4 2018

cảm ơn bạn

\(20A=\dfrac{20^{101}-1-19}{20^{101}-1}=1-\dfrac{19}{20^{101}-1}\)

\(20B=\dfrac{20^{102}-1-19}{20^{102}-1}=1-\dfrac{19}{20^{102}-1}\)

mà \(\dfrac{-19}{20^{101}-1}< \dfrac{-19}{20^{102}-1}\)

nên A<B

AH
Akai Haruma
Giáo viên
25 tháng 6

Lời giải:

$\frac{100}{101}=\frac{10200}{10302}=\frac{1020000}{1030200}$

$\frac{101}{102}=\frac{10201}{10302}=\frac{1020100}{1030200}$

10 phân số nằm giữa 2 phân số trên là:

$\frac{1020001}{1030200}, \frac{1020002}{1030200}, \frac{1020003}{1030200}, \frac{1020004}{1030200}, \frac{1020004}{1030200}, \frac{1020005}{1030200}, \frac{1020006}{1030200}, \frac{1020007}{1030200}, \frac{1020008}{1030200}, \frac{1020009}{1030200}, \frac{1020010}{1030200}$

7 tháng 7 2021

Ta xét: \(\dfrac{1}{100} + \dfrac{1}{101} + \dfrac{1}{102}...+ \dfrac{1}{200}\)

\(\dfrac{1}{100} > \dfrac{1}{200}\)

\(\dfrac{1}{101}>\dfrac{1}{200}\)

.

.

.

\(\dfrac{1}{199}>\dfrac{1}{200}\)

\(\Rightarrow\)\(\dfrac{1}{100} + \dfrac{1}{101} + \dfrac{1}{102} +...+\dfrac{1}{200}\)(có 101 phân số) > \(100.\dfrac{1}{200} = \dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:
\(\frac{1}{100}+\frac{1}{101}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}=\frac{101}{200}>\frac{100}{200}=0,5>0,499\)

3 tháng 3 2016

đặt M=101.102.11=113322 
Ta có: 
100/101=(100.102.11)/(101.102.11) 
=112200/M 
101/102=(101.101.11)/(101.102.11) 
=112211/M 
--->10 phân số trong khoảng này là: 
112201/M; 112202/M; 112203/M; 112204/M; 112205/M; 112206/M; 112207/M; 112208/M; 112209/M; 112210/M;

3 tháng 3 2016

Chịch nhau thì trả lời... Bướm bị Chim sọc lồn

30 tháng 1 2023

Theo đề ra, ta có:

\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Leftrightarrow\left(a^{100}+b^{100}\right).\left(a^{102}+b^{102}\right)=\left(a^{101}+b^{101}\right)^2\)

\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2\right)+a^{202}+b^{202}=a^{202}+b^{202}+2a^{101}.b^{101}\)

\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2\right)=2a^{101}.b^{101}\)

\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2-2ab\right)=0\)

\(\Leftrightarrow a=b=0\)

\(\Rightarrow a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Rightarrow a^{100}=a^{101}\)

\(\Leftrightarrow a^{100}.\left(a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)

\(\Rightarrow A=a^{2015}+b^{2015}=1+1=2\).

 

30 tháng 1 2023

\(Từ:\) \(a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Leftrightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)

\(và\) \(a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Leftrightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0 \left(2\right)\)

\(Từ\left(1\right)\) \(và\) \(\left(2\right)\)

\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)-a^{100}\left(a-1\right)-b^{100}\left(b-1\right)=0\)

\(\Leftrightarrow a^{100}\left(a-1\right)^2+b^{100}\left(b-1\right)^2\)

\(Do\) \(a,b>0\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Rightarrow A=1+1=2\)

em không chắc cho lắm ạ

 

25 tháng 5 2022

Ta có đẳng thức: \(a^{102}+b^{102}=\left(a^{101}+b^{101}\right)\left(a+b\right)-ab\left(a^{100}+b^{100}\right)\) với mọi số a,b

Kết hợp với: \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Rightarrow1=\left(a+b\right)-ab\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\Rightarrow1+b^{100}=1+b^{101}=1+b^{102}\Rightarrow b=1\\b=1\Rightarrow1+a^{100}=1+a^{101}=1+a^{102}\Rightarrow a=1\end{matrix}\right.\)

Do đó: \(P=a^{2014}+b^{2014}=1^{2004}+1^{2005}=2\)

5 tháng 10 2021

Trả lời giúp mình các bạn ơi

 

5 tháng 10 2021

A=100/99+101/100=10000/9900+9999/9900=19999/9900.                    

B=102/101+103/102=1040/10302+10403/10302=11443/10302        

 

 

 

21 tháng 8 2016

\(\frac{20^{101}-1}{20^{102}-1}>\frac{20^{101}-20}{20^{102}-20}=\frac{20.\left(20^{100}-1\right)}{20.\left(20^{101}-1\right)}=\frac{20^{100}-1}{20^{101}-1}\)

\(\Rightarrow\frac{20^{101}-1}{20^{102}-1}>\frac{20^{100}-1}{20^{101}-1}\)

21 tháng 8 2016

tui biết làm nhưng ko mún làm

3 tháng 5 2019

b) Ta có: \(\frac{1}{101}>0\)

              \(\frac{1}{102}>0\)

                ...............,....

                 \(\frac{1}{200}>0\)

\(\Rightarrow S>0\left(1\right)\)

Lại có: \(\frac{1}{101}< \frac{1}{100}\)

             \(\frac{1}{102}< \frac{1}{100}\)

               ......................

             \(\frac{1}{200}< \frac{1}{100}\)

\(\Rightarrow S< \frac{1}{100}.100\)

\(\Rightarrow S< 1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow0< S< 1\)

Vậy S ko là   số tự nhiên

3 tháng 5 2019

a, ta có 1/101<1/100; 1/102<1/100;...;1/109<1/100

=> S=1/101+1/102+...+1/109< 1/100+1/100+...+1/100=9/100

=>S<9/100

b,ta thấy S luôn >0

S=1/101+1/102+...+1/200<1/100+1/100+...+1/100=1

=>S<1

=>0<S<1 => S không phải số tự nhiên