tìm y
a )4 x y + y + y +y =3696
b ) 14 x y - 4 x y - y + 1899
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(25,5+y-12,5=4.7\)
⇔\(13+y=28\)
⇔\(y=15\)
b)\(76,22-y-25,7=30+5,52\)
⇔\(50,52-y=35,52\)
⇔\(y=15\)
c)\(4,5-y+1,2=3,5\)
⇔\(5,7-y=3,5\)
⇔\(y=2,2\)
\(a,\Rightarrow10+y=28\\ \Rightarrow y=18\\ b,\Rightarrow50,52-y=35,52\\ \Rightarrow y=15\\ c,\Rightarrow5,7-y=3,5\\ \Rightarrow y=2,2\)
a,Ta có:
\(\dfrac{x}{y}=\dfrac{7}{4}=\dfrac{x}{7}=\dfrac{y}{4}\)
ÁP dụng tcdtsbn , ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=21\\y=12\end{matrix}\right.\)
b,
\(\Rightarrow3.\left(x-1\right)=-24\)
\(\Rightarrow x-1=-8\)
\(\Rightarrow x=-7\)
A)\(\dfrac{x}{y}=\dfrac{7}{4}\Rightarrow\dfrac{x}{7}=\dfrac{y}{4}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)
\(\dfrac{x}{7}=3\Rightarrow x=21\\ \dfrac{y}{4}=3\Rightarrow y=12\)
B) \(3\left(x-1\right)+5=-19\\ \Rightarrow3\left(x-1\right)=-24\\ \Rightarrow x-1=-8\\ \Rightarrow x=-7\)
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)
\(b.\)
\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)
\(c.\)
\(\dfrac{x}{4}=\dfrac{y}{5}\)
\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(10;25)
b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
mà y-3x=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(1;5)
c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)
nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)
mà 2x-y=15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(20;25)
Giải:
a) \(y^2=3-\left|2x-3\right|\)
Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )
TH1:
\(y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow\left|2x-3\right|=3\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
TH2:
\(y^2=1\)
\(\Rightarrow y=\pm1\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{-5}=\dfrac{-3x+2y}{-12-10}=\dfrac{55}{-22}=\dfrac{-5}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-20}{2}=-10\\y=\dfrac{25}{2}\end{matrix}\right.\)
b: Ta có: \(\dfrac{x}{y}=\dfrac{-7}{4}\)
nên \(\dfrac{x}{-7}=\dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{4x-5y}{-28-20}=\dfrac{72}{-48}=\dfrac{-3}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=\dfrac{-12}{2}=-6\end{matrix}\right.\)
` 242/363 + 1616/2121 = 2/7 xxy`
`2/7 xxy= 2/3 + 16/21`
`2/7 xxy= 14/21 +16/21`
`2/7 xxy= 30/21`
`y=10/7 : 2/7`
`y=10/7 xx 7/2`
`y=70/14`
`y=5`
__
` (y + 1/4) + (y + 1/16) + (y + 1/16) =2`
`(y+y+y)+(1/4 + 1/16+1/16)=2`
`3y + (4/16 +1/16 +1/16)=2`
`3y + 6/16=2`
`3y=2-6/16`
`3y= 32/16-6/16`
`3y= 26/16`
`y=26/16 : 3`
`y=26/48`
`y=13/24`
\(a,\dfrac{242}{363}+\dfrac{1616}{2121}=\dfrac{2}{7}\times y\)
\(\dfrac{2}{7}\times y=\dfrac{2\times121}{3\times121}+\dfrac{16\times101}{21\times101}\)
\(\dfrac{2}{7}\times y=\dfrac{2}{3}+\dfrac{16}{21}\)
\(\dfrac{2}{7}\times y=\dfrac{14}{21}+\dfrac{16}{21}\)
\(\dfrac{2}{7}\times y=\dfrac{30}{21}\)
\(\dfrac{2}{7}\times y=\dfrac{10}{7}\)
\(y=\dfrac{10}{7}:\dfrac{2}{7}\)
\(y=\dfrac{10}{7}\times\dfrac{7}{2}\)
\(y=5\)
\(---\)
\(b,\left(y+\dfrac{1}{4}\right)+\left(y+\dfrac{1}{16}\right)+\left(y+\dfrac{1}{16}\right)=2\)
\(\left(y+y+y\right)+\left(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{16}\right)=2\)
\(3\times y+\left(\dfrac{4}{16}+\dfrac{2}{16}\right)=2\)
\(3\times y+\dfrac{6}{16}=2\)
\(3\times y+\dfrac{3}{8}=2\)
\(3\times y=2-\dfrac{3}{8}\)
\(3\times y=\dfrac{16}{8}-\dfrac{3}{8}\)
\(3\times y=\dfrac{13}{8}\)
\(y=\dfrac{13}{8}:3\)
\(y=\dfrac{13}{8}\times\dfrac{1}{3}\)
\(y=\dfrac{13}{24}\)
#\(Toru\)
a) y x 42 + y x 57 + y = 25 400
y x ( 42 + 57 + 1 ) = 25 400
y x 100 = 25 400
y = 25 400 : 100
y = 254
b) 142 x y - 41 x y - y = 408 000
y x ( 142 - 41 - 1 ) = 408 000
y x 100 = 408 000
y = 408 000 : 100
y = 4 080
a.y*(42+57+1)=25400
y*100=25400
y=25400:100=254
b.(142-41-1)*y=408000
100*y=408000
y=408000:100=4080
a) 4 x y + y + y + y = 3696
4 x ( y x 4 ) = 3696
y x 4 = 3696 : 4
y x 4 = 924
y = 924 : 4
y = 184.8
Vậy y = 184.8
a)4 . y. 4=3696
16y=3696
y=231
b)14 . y-4.y-y=1899
y.10-y=1899
9y=1899
y=211