K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

đề có bị sai không bạn

15 tháng 12 2021

Cô mình tạo á.Ko biết có sai ko ;-;

Bạn tham khảo thử nhé:

Ta có: \(A=\left(2003^{2002}+2002^{2002}\right)^{2003}\\ =2003^{2002.2003}+2002^{2002.2003}->\left(a\right)\\ B=\left(2003^{2003}+2002^{2003}\right)^{2002}\\ =2003^{2003.2002}.2002^{2003.2002}->\left(b\right)\\ Từ\left(a\right),\left(b\right),ta-thấy:2003^{2002.2003}+2002^{2002.2003}=2003^{2003.2002}+2002^{2003.2002}\\ =>A=B\)

19 tháng 4 2017

B = \(\frac{2001}{2002}+\frac{2002}{2003}\)

có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)

\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)

Vậy A>B

21 tháng 6 2020

\(a^2+b^2+c^2=1\Rightarrow-1\le a;b;c\le1\text{ ta có:}\)

\(a^2-a^3+b^2-b^3+c^2-c^3=a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\Rightarrow\text{ 1 số bằng 1; 2 số bằng 1}\)

do đó:a+b2+c3=1

21 tháng 6 2020

\(\hept{\begin{cases}a^2+b^2+c^2=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}}\)

Ta có: ( 1) => \(a^2\le1;b^2\le1;c^2\le1\) => \(-1\le a\le1;-1\le b\le1;-1\le c\le1\)

=> \(\left(a-1\right)\le0;\left(b-1\right)\le0;\left(c-1\right)\le0\)

<=> \(a^2\left(a-1\right)\le0;b^2\left(b-1\right)\le0;c^2\left(c-1\right)\le0\)

Lấy (2) - (1) ta có: \(a^3-a^2+b^3-b^2+c^3-c^2=0\)

<=> \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)(1)

TH1) Tồn tại ít nhất 1 số trong 3 số: \(a^2\left(a-1\right);b^2\left(b-1\right);c^2\left(c-1\right)< 0\)

=> vô lí 

Th2) Cả 3 số bằng 0 

(1) <=> \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)

Mặt khác \(a^2+b^2+c^2=1\)

Do đó chỉ có các nghiệm: ( 1; 0; 0) hoặc (0; 0; 1) hoặc ( 0; 1; 0 ) thỏa mãn

Vậy tổng a + b^2 + b^3 = 1