Cho a,b,c thoả mãn điều kiện
\(\hept{\begin{cases}a^{2002}+b^{2002}+c^{2002}=1\\a^{2003}+b^{2003}+c^{2003}=1\end{cases}}\)
Tính tổng a2001+b2002+c2003
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo thử nhé:
Ta có: \(A=\left(2003^{2002}+2002^{2002}\right)^{2003}\\ =2003^{2002.2003}+2002^{2002.2003}->\left(a\right)\\ B=\left(2003^{2003}+2002^{2003}\right)^{2002}\\ =2003^{2003.2002}.2002^{2003.2002}->\left(b\right)\\ Từ\left(a\right),\left(b\right),ta-thấy:2003^{2002.2003}+2002^{2002.2003}=2003^{2003.2002}+2002^{2003.2002}\\ =>A=B\)
B = \(\frac{2001}{2002}+\frac{2002}{2003}\)
có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B
\(a^2+b^2+c^2=1\Rightarrow-1\le a;b;c\le1\text{ ta có:}\)
\(a^2-a^3+b^2-b^3+c^2-c^3=a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\Rightarrow\text{ 1 số bằng 1; 2 số bằng 1}\)
do đó:a+b2+c3=1
\(\hept{\begin{cases}a^2+b^2+c^2=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}}\)
Ta có: ( 1) => \(a^2\le1;b^2\le1;c^2\le1\) => \(-1\le a\le1;-1\le b\le1;-1\le c\le1\)
=> \(\left(a-1\right)\le0;\left(b-1\right)\le0;\left(c-1\right)\le0\)
<=> \(a^2\left(a-1\right)\le0;b^2\left(b-1\right)\le0;c^2\left(c-1\right)\le0\)
Lấy (2) - (1) ta có: \(a^3-a^2+b^3-b^2+c^3-c^2=0\)
<=> \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)(1)
TH1) Tồn tại ít nhất 1 số trong 3 số: \(a^2\left(a-1\right);b^2\left(b-1\right);c^2\left(c-1\right)< 0\)
=> vô lí
Th2) Cả 3 số bằng 0
(1) <=> \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)
Mặt khác \(a^2+b^2+c^2=1\)
Do đó chỉ có các nghiệm: ( 1; 0; 0) hoặc (0; 0; 1) hoặc ( 0; 1; 0 ) thỏa mãn
Vậy tổng a + b^2 + b^3 = 1