Cho tam giác ABC có AB = 3cm, AC = 4cm và BC = 5cm. Đường trung trực của BC cắt AC tại D. Trên tia đối của tia DB lấy điểm E sao cho DE = DC.
a) Tam giác ABC là tam giác gì? Vì sao?
b) Chứng minh tam giác BDC cân.
c) Chứng minh BC vuông với CE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có
BC^2=AB^2+AC^2
=>BC^2=4^2+3^2
=>BC^2=16+9=25
=>BC=căn25=5 (cm)
vậy,BC=5cm
b)Xét tam giác ABC và AED có
AB=AE(gt)
 là góc chung
AC=AD(gt)
=>tam giác ABC=tam giác AED(c-g-c)
Xét tam giác AEB có:Â=90*;AE=AB
=>tam giác AEB vuông cân tại A
Vậy tam giác AEB vuông cân
c)Ta có EÂM+BÂM=90*
mà BÂM+MÂB=90*
=>EÂM=MÂB
mà MÂB=AÊD(cm câu b)
=>EÂM=AÊD hay EÂM=AÊM
xét tam giác EAM có: EÂM=AÊM(cmt)
=>tam giác EAM cân tại M
=>ME=MA (1)
Ta có góc ACM+CÂM=90*
mà BÂM+CÂM=90*
=>góc ACM=BÂM
mà góc ACM=góc ADM( cm câu b)
=>góc ADM=DÂM
Xét tam giác MAD có góc ADM=DÂM(cmt)
=>tam giác ADM cân tại M
=>MA=MD (2)
Từ (1) và (2) suy ra MA=ME=MD
ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền
=>MA=1/2ED
=>MA là đg trung tuyến ứng với cạnh ED
Vậy MA là đg trung tuyến của tam giác ADE
a: Xét ΔADE và ΔCDB có
DE=DB
\(\widehat{ADE}=\widehat{CDB}\)
DA=DC
Do đó: ΔADE=ΔCDB
Xét tứ giác ABCE có
D là trung điểm của AC
D là trung điểm của BE
Do đó:ABCE là hình bình hành
Suy ra: AE//BC
b: ta có: ΔENB vuông tại N
mà ND là đường trung tuyến
nên ND=DB=DE=BE/2