Giải phương trình:
$\frac{7x^{3}-101x^{2}+42x}{2x^{2}+x+12}=x^{2}-11x+6.$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt <=> 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/(x+5).(x+6) = 1/8
<=> 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 - 1/x+6 = 1/8
<=> 1/x+2 - 1/x+6 = 1/8
<=> (x+6-x-2)/(x+2).(x+6) = 1/8
<=> 4/(x+2).(x+6) = 1/8
<=>(x+2).(x+6) = 4 : 1/8 = 32
<=>x^2 + 8x + 12 = 32
<=> x^2+8x+12-32=0
<=>x^2+8x-20=0
<=>(x-2).(x+10)=0
<=> x-2 =0 hoặc x+10 = 0
<=> x=2 hoặc x=-10
giang sinh an lanh $%###Xuyen gam cu chuoi###%$
phân tích mẫu thành nhân tử r` tách ra rút gọn như kiểu bài tính của lớp 5 ấy
bài tương tự : Câu hỏi của Lê Phương Oanh - Toán lớp 8 | Học trực tuyến (https://h-o-c-24.vn/hoi-dap/question/179719.html)
ĐKXĐ : x khác -3;-4;-5;-6
pt <=> 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/(x+5).(x+6) = 1/18
<=> 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 - 1/x+6 = 1/18
<=> 1/x+3 - 1/x+6 = 1/18
<=> x+6-x-3/(x+3).(x+6) = 1/18
<=> 3/x^2+9x+18 = 1/18
<=> x^2+9x+18 = 3 : 1/18 = 48
<=> x^2+9x+18-48 = 0
<=> x^2+9x-30 = 0
<=>(x+9/2)^2 = 201/4
<=> x = \(\frac{+-\sqrt{201}-9}{2}\)(tm)
k mk nha
\(\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{18}\)
\(\Leftrightarrow\)\(\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{18}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{18}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+6}=\frac{1}{18}\)
\(\Leftrightarrow\)\(\frac{3}{\left(x+3\right)\left(x+6\right)}=\frac{1}{18}\)
\(\Leftrightarrow\)(x + 3)(x + 6) = 54 = 6.9 = (-6).(-9)
Đến đây giải tiếp nha
\(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{x+2}-\frac{1}{\left(x+6\right)}\)
\(\frac{1}{t}-\frac{1}{t+4}=\frac{4}{t\left(t+4\right)}=\frac{1}{8}=\frac{4}{32}\Rightarrow t=4\Rightarrow x=2\)