Chứng minh \(x^4+x+\frac{11}{2}x^2+6\) không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người giúp mình với huhu... lm giúp mình theo cách lớp 7 nhé T.T hoặc nói hướng làm thôi cũng đc =))))
\(x^4+\left(\sqrt{\frac{11}{2}}.x\right)^2+2.\sqrt{\frac{11}{2}}.x.\sqrt{\frac{8}{11}}+\frac{8}{11}+5\frac{3}{11}>0\)
\(M\left(x\right)=x^4+\frac{11}{2}x^2+x+6=\left(x^4+\frac{9}{2}x^2+\frac{81}{16}\right)+\left(x^2+x+\frac{1}{4}\right)+\frac{11}{16}\)
=> \(M\left(x\right)=\left(x^4+2.\frac{9}{4}x^2+\left(\frac{9}{4}\right)^2\right)+\left(x^2+2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right)+\frac{11}{16}\)
=> \(M\left(x\right)=\left(x^2+\frac{9}{4}\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{11}{16}\)
Nhận thấy: Do \(\left(x^2+\frac{9}{4}\right)^2>0;\left(x+\frac{1}{2}\right)^2\ge0\)Với mọi x
=> \(M\left(x\right)>\frac{11}{16}\) với mọi x
=> Đa thức M(x) vô nghiệm (không có nghiệm)
Vì:\(\hept{\begin{cases}\left(x+2\right)^4>0\\x^2>0\\11>0\end{cases}}\)
a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\cdot\frac{x-1}{2x+2}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2x-2}{2x+2}=\frac{2009}{2011}\)
Bạn làm nốt.Nhân chéo là ra
\(\left(x-1\right)f\left(x\right)=\left(x+4\right)\cdot f\left(x+8\right)\)
Với \(x=1\) ta có:
\(\left(1-1\right)\cdot f\left(1\right)=\left(1+4\right)\cdot f\left(9\right)\)
\(\Rightarrow5\cdot f\left(9\right)=0\)
\(\Rightarrow f\left(9\right)=0\)
Vậy \(x=9\)
Thay \(x=-4\) vào ta được:
\(\left(-4-1\right)\cdot f\left(-4\right)=0\cdot f\left(4\right)\)
\(\Rightarrow f\left(-4\right)=0\)
Vậy \(x=-4\)
\(\Rightarrow f\left(x\right)\) có ít nhất 2 nghiệm là 9;-4