cho tam giác ABC vuông tại A có góc ACB=65 độ.Kẻ AH vuông góc BC tại H,trên tia đối của tia HA lấy điểm E sao cho HE=HA.Gọi M là trung điểm cạnh BC,trên tia đối của MA lấy điểm D sao cho MD=MA.
a,Tính số đo góc ABC và so sánh AB và AC.
b,Chứng minh tam giác ABH bằng tam giác EBH,từ đó suy ra tam giác ABE cân tại B
c, Chứng minh tam giác BEC vuông tại E
d,Chứng minh ED song song với BC
a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ
AC < AB ( 65 độ > 25 độ)
b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)
=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)
c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC
=> BEC = BAC = 90 độ
=> tam giác BEC vuông tại E (đpcm)
d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)