Chứng minh :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{101}\right)\)\(-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}+\frac{1}{102}\right)\)\(=\)\(\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}+\frac{1}{101}+\frac{1}{102}\)
Mik đng cần gấp , giúp mik nha, giải kĩ cho mik nha
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{101}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{102}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{101}+\frac{1}{102}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{102}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{51}\)
\(=\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{102}\)
\(=VP\)