cho tam giác ABC vuông tại A, đường cao AH. Gọi E,F thứ tự là hình chiếu của H trên AB, AC
a, Cm tứ giác AEHF là hình chữ nhật
b, Cm BE.HC=AH.EH
c, ký hiệu diện tích tam giác ABC là S(ABC), diện tích hình chữ nhật AEHF là S(AEHF) Chứng minh S(AEHF) \(\le\)S(ABC). Dấu bằng xảy ra khi và chỉ khi tam giác ABC là tam giác vuông cân .
a) Tứ giác \(AEHF\)có: \(\widehat{HEA}=\widehat{EAF}=\widehat{AFH\:}=90^0\)
\(\Rightarrow\)\(AEHF\) là hình chữ nhật
b) Xét \(\Delta BEH\)và \(\Delta AHC\)ta có:
\(\widehat{BEH}=\widehat{AHC}=90^0\)
\(\widehat{EBH}=\widehat{HAC}\) (cùng phụ với góc HAB)
suy ra: \(\Delta BEH~\Delta AHC\)
\(\Rightarrow\)\(\frac{BE}{AH}=\frac{EH}{HC}\)
\(\Rightarrow\)\(BE.HC=AH.EH\) (đpcm)