K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

sai đề bạn ơi

2 tháng 9 2015

mình biết làm nhưng dài quá bạn tra trên google là đc

13 tháng 5 2019

\(x-y=x^3-y^3\Leftrightarrow x-y=\left(x-y\right)\left(x^2+xy+y^2\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-1\right)=0..\) 

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2=1\end{cases}.}\) Vì x và y dương nên xy >0  Do đó từ x2 + y2 + xy = 1 Suy ra :    x2 + y2 < 1 

14 tháng 3 2016

Áp dụng bất đẳng thức cho ba số  \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\)  \(\Rightarrow\)  \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\)  \(\left(1\right)\)

\(y^2+z^2\ge2yz\)   \(\Rightarrow\)  \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\)  \(\left(2\right)\)

\(z^2+x^2\ge2xz\)  \(\Rightarrow\)  \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\)  \(\left(3\right)\)

Cộng từng vế của  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\)  ta được  \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)

\(\Leftrightarrow\)  \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(x=y=z=\frac{3}{2015}\)

Vậy,  \(P_{max}=2015\)  \(\Leftrightarrow\)   \(x=y=z=\frac{3}{2015}\)