chứng minh rằng giá trị các biểu thức không phụ thuộc vào các biến: (x+y-z-t)^2 -(z+t-x-y)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+2)^2 -2(x+2)(x-8)+(x-8)^2
= ((x+2)-(x-8))^2 (hang dang thuc)
=(x+2-x+8)^2
=(10)^2
=100
biểu thức trên ko phụ thuộc vào biến vi kết quả ko có biến
b, (x+y-z-t)^2-(z+t-x-y)^2
=((x+y-z-t)+(z+t-x-y))*((x+y-z-t)-(z+t-x-y))
= 0*((x+y-z-t)-(z+t-x-y))
=0
biểu thức trên ko phụ thuộc vào biến vi kết quả ko có biến
\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+3\left(x^2+y^2+z^2\right)\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2-2xy+y^2+x^2-2xz+z^2+3x^2+3y^2+3z^2\)
A phụ thuộc vào biến mà
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
\(A=\left(x-2y\right)\left(x+2y\right)+\left(2y-x\right)^2+2023+4xy\)
\(A=x^2-\left(2y\right)^2+\left(4y^2-4xy+x^2\right)+2023+4xy\)
\(A=x^2-4y^2+4y^2-4xy+x^2+4xy\)
\(A=2x^2+2023\)
Vậy giá trị của biểu thức chỉ phụ thuộc vào x không phụ thuộc vào y
\(B=\left(2x-3\right)\left(x-y\right)-\left(x-y\right)^2+\left(y-x\right)\left(x+y\right)\)
\(B=2x^2-2xy-3x+3y-\left(x^2-2xy+y^2\right)+y^2-x^2\)
\(B=2x^2-2xy-3x+3y-x^2+2xy-y^2+y^2-x^2\)
\(B=-3x+3y\)
Vậy giá trị của biểu thức vẫn phụ thuộc vào biến
A = (\(x\) - 2y)(\(x\) + 2y) + (2y - \(x\))2 + 2023 + 4\(xy\)
A = \(x^2\) - 4y2 + 4y2 - 4\(xy\) + \(x^2\) + 2023 + 4\(xy\)
A = (\(x^2\) + \(x^2\)) - (4y2 - 4y2) + 2023 - (4\(xy\) - 4\(xy\))
A = 2\(x^2\) - 0 + 2023 - 0
A = 2\(x^2\) + 2023
Việc chứng minh A có giá trị không phụ thuộc vào giá trị của biến là điều không thể xảy ra.
\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+xy^3-y^3z^2+yz^3-x^2z^3+x^2y^2z^2-xyz\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy^3-xyz\right)-\left(y^3z^2-yz^3\right)+\left(x^2y^2z^2-x^2z^3\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy\left(y^2-z\right)\right)-\left(yz^2\left(y^2-z\right)\right)+\left(x^2z^2\left(y^2-z\right)\right)\)
\(P=\left(-x^3+xy-yz^2+x^2z^2\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2z^2-x^3\right)-\left(yz^2-xy\right)\right)\left(y^2-z\right)\)
\(P=\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2-y\right)\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(a.c\right).b\)
\(P=a.b.c\)
Vậy giá trị của P không phụ thuộc vào biến x;y;z (điều cần chứng minh)
\(P=\dfrac{x\left(\sqrt{y}-\sqrt{z}\right)-y\left(\sqrt{x}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}+\dfrac{z}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)
\(=\dfrac{x\sqrt{y}-x\sqrt{z}-y\sqrt{x}+y\sqrt{z}+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)
\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{z}\left(x-y\right)+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)
\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{xy}-\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)+z\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)
\(=\dfrac{\left(\sqrt{xy}-\sqrt{zx}-\sqrt{zy}+z\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{y}-\sqrt{z}\right)-\sqrt{z}\left(\sqrt{y}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)
\(=\dfrac{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)
=1
B=-x(x-y)-y(x+y)+(x+y)(x-y)+2y^(2)
B=-x^2+xy-yx-y^2+x^2-xy+xy-y^2+2y^2
B=0
vậu B ko phọ thuộc vào gt của biến
\(B=-x\left(x-y\right)-y\left(x+y\right)+\left(x+y\right)\left(x-y\right)+2y^2\)
\(=-x^2+xy-xy-y^2+x^2-y^2+2y^2\)
=0
(x+y-z-t)2-(z+t+x-y)2= (x+y-z-t+z+t-x-y)(x+y-z-t-z-t+x+y) = 0.2(x+y-z-t) = 0
Vậy (đpcm)