Tìm nghiệm của đa thức h(x)= 1+x+x2
Giải đầy đủ cho mình nhé, cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(h\left(x\right)=x^3+4x-3\left(x^2+4\right)\)
\(\Rightarrow h\left(x\right)=x^3+4x-3x^2-12\)
\(\Rightarrow h\left(x\right)=x^3-3x^2+4x-12\)
\(\Rightarrow h\left(x\right)=x^2\left(x-3\right)+4\left(x-3\right)=\left(x^2+4\right)\left(x-3\right)\)
h(x) có nghiệm <=> h(x)=0 <=> \(\left(x^2+4\right)\left(x-3\right)=0\Leftrightarrow\int^{x^2+4=0}_{x-3=0}\)
Vì \(x^2\ge0\Rightarrow x^2+4\ge0+4>0\) (với mọi x \(\in\) R)=>x2+4 vô nghiệm
=>x-3=0=>x=3
Vậy............................
dạ em ghi day du cho chị ạ;
muon tim nghiem cua 1 da thuc thi ta cho da thuc do =0 roi tim x
chị nho ly thuyet chu? ta co;
3x2 - x =x(3x - 1) =0
x1 =0
x2 = 1/3
vay da thuc co 2 nghiem do chị
g(x) = ( x - 3 ) x ( 16 - 4x )
Ơ đay xẽ xảy ra hai trương hợp :
+) ( x - 3 ) = 0
x = 0 + 3
x = 3
+) ( 16 - 4x ) = 0
4x = 16 - 0
4x = 16
x = 16 : 4
x = 4
Đúng nha Hero chibi
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
Khi cùng trừ cả tử và mẫu cho cùng 1 số thì hiệu của chúng không thay đổi
hiệu của tử số và mẩu số là 98-73=25
Coi hiệu của chúng là 5 phần
tử số là 25:5=5
số đó là 73-5=68
nhớ đó
Ta có \(Q\left(1\right)=5-5+a^2-a=0\Leftrightarrow a\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
a) 2x+10=0->2x=-10->x=-5
b) 4(x-1)+3x-5=0->4x-4+3x-5=0
=7x-9=0->7x=-9->x=-1.28571428571
c)-1 1/3x^2+x=0
=-3x^2/-3x^2+x=0
=1+x=0
x=-1
c: =>-4/3x^2+x=0
=>x(-4/3x+1)=0
=>x=0 hoặc x=3/4
a: 2x+10=0
=>2x=-10
=>x=-5
b: =>4x-4+3x-5=0
=>7x-9=0
=>x=9/7
$h(x)=x^2+x+1=0$
$\Rightarrow x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=0$
$\Rightarrow x(x+\frac{1}{2})+\frac{1}{2}(x+\frac{1}{2})+\frac{3}{4}=0$
$\Rightarrow (x+\frac{1}{2})(x+\frac{1}{2})+\frac{3}{4}=0$
$\Rightarrow (x+\frac{1}{2})^2+\frac{3}{4}=0$
$\Rightarrow (x+\frac{1}{2})^2=\frac{-3}{4}$ (vô lí)
-Vậy: đa thức h(x) ko có nghiệm.