Cho a,b,c thoả mãn \(\hept{\begin{cases}a^2+b^2+c^2=1\\a^3+b^3+c^3=1\end{cases}}\)
Tính tổng \(a+b^2+c^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(a^2+b^2+c^2=1\) , ta có thể suy ra rằng \(\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\)
Ta Có \(a^2-a^3+b^2-b^3+c^2-c^3=0\)
<=> \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Nhận thấy \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Nên suy ra \(\hept{\begin{cases}a\left(1-a\right)=0\\b\left(1-b\right)=0\\c\left(1-c\right)=0\end{cases}}\) Vậy tồn tại trong ba số a,b,c có một số bằng 1
Kết hợp Với \(a^2+b^2+c^2=1\)
Suy ra hai số còn lại bằng 0
Vậy \(a+b^2+c^3=1\)
\(\Leftrightarrow\left(a^3+b^3+c^3\right)-\left(a^2+b^2+c^2\right)=0\)
\(\Leftrightarrow\left(a^3-a^2\right)+\left(b^3-b^2\right)+\left(c^3-c^2\right)=0\)
\(\Leftrightarrow a.\left(a^2-1\right)+b.\left(b^2-1\right)+c.\left(c^2-1\right)=0\)
Vì \(a.\left(a^2-1\right)\ge0;b.\left(b^2-1\right)\ge0;c.\left(c^2-1\right)\ge0\)
\(\Rightarrow a.\left(a^2-1\right)=0;b.\left(b^2-1\right)=0;c.\left(c^2-1\right)=0\)
\(\hept{\begin{cases}a.\left(a^2-1\right)=0\\b.\left(b^2-1\right)=0\\c.\left(c^2-1\right)=0\end{cases}\Rightarrow\hept{\begin{cases}a=0;\pm1\\b=0;\pm1\\c=0;\pm1\end{cases}}}\)
rồi bn tings bốt hộ mk
mk mới lớp 6 lên cứ làm bừa
mk giải nhì toán leenbuafw thôi
Ta có: \(ab+bc+ca=\frac{\left(a+b+c\right)^2-a^2-b^2-c^2}{2}=0\)
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\)
\(\Rightarrow abc=0\)
Từ đó ta có hpt\(\hept{\begin{cases}a+b+c=1\\ab+bc+ca=0\\abc=0\end{cases}}\). Theo định lý Viet suy ra a,b,c là các nghiệm của \(x^3-x^2=0\Leftrightarrow x.x\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(\Rightarrow\left(a,b,c\right)=\left(1,0,0\right)\)và các hoán vị
Khi đó: \(a^{2019}+b^{2020}+c^{2021}=1\)
Này bạn kia , bạn ăn nói đàng hoàng nhé TFBOYS tàu khựa gì chứ , bạn là fan EXO đúng không . Vậ mình nghĩ EXO cũng chẳng khác gì TFboys đâu toàn lũ xách bô thôi .EXO-L cái gì chứ EXO L~ thì có .
\(a^2+b^2+c^2=1\Rightarrow-1\le a;b;c\le1\text{ ta có:}\)
\(a^2-a^3+b^2-b^3+c^2-c^3=a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\Rightarrow\text{ 1 số bằng 1; 2 số bằng 1}\)
do đó:a+b2+c3=1
\(\hept{\begin{cases}a^2+b^2+c^2=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}}\)
Ta có: ( 1) => \(a^2\le1;b^2\le1;c^2\le1\) => \(-1\le a\le1;-1\le b\le1;-1\le c\le1\)
=> \(\left(a-1\right)\le0;\left(b-1\right)\le0;\left(c-1\right)\le0\)
<=> \(a^2\left(a-1\right)\le0;b^2\left(b-1\right)\le0;c^2\left(c-1\right)\le0\)
Lấy (2) - (1) ta có: \(a^3-a^2+b^3-b^2+c^3-c^2=0\)
<=> \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)(1)
TH1) Tồn tại ít nhất 1 số trong 3 số: \(a^2\left(a-1\right);b^2\left(b-1\right);c^2\left(c-1\right)< 0\)
=> vô lí
Th2) Cả 3 số bằng 0
(1) <=> \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)
Mặt khác \(a^2+b^2+c^2=1\)
Do đó chỉ có các nghiệm: ( 1; 0; 0) hoặc (0; 0; 1) hoặc ( 0; 1; 0 ) thỏa mãn
Vậy tổng a + b^2 + b^3 = 1