Cho tam giác ABC nhọn(AB<AC) có góc BAC = 60 độ nội tiếp trong đường tròn. Tiếp tuyến A của đường tròn cắt tia CB tại M. bán kính 0D vuông góc với BC tại E. Gọi N là giao điểm của AD và MC. Chứng minh tam giác AMN cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek
đề đây nha mn :(( cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP
c cmr CE = CD tam giác AMD là tam giác j vì s
D CMR AM NHỎ HƠN AB +AC /2
CHỈ LM MỖI Ý D THUI NHA NHANH NHA
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xet ΔMAD có
MH vừa là đường cao,vừa là trung tuyến
=>ΔMAD cân tại M
d: AM<1/2(AB+AC)
=>AE<AB+AC
=>AE<BE+AB(luôn đúng)
ta có OD vuông góc với BC nên D là điểm chính giữa cung BC nên AD là phân giác góc BAC
nên góc BAD=góc CAD=60/2=30 độ hay góc BAN=30 độ
góc BAM=góc BCA( góc tạo bởi tiếp tuyến và dây và góc nội tiếp cùng chắn cung BA)
suy ra góc NAM=30 + góc BAM=30 độ+ góc BCA
mà góc ANM là góc ngoài tam giác NAC nên góc ANM= góc NAM+góc NCA=30 độ + góc BCA= gócNAM suy ra tam giác ANM cân ởM